考點(diǎn)解析北師大版9年級數(shù)學(xué)上冊期末試卷【黃金題型】附答案詳解_第1頁
考點(diǎn)解析北師大版9年級數(shù)學(xué)上冊期末試卷【黃金題型】附答案詳解_第2頁
考點(diǎn)解析北師大版9年級數(shù)學(xué)上冊期末試卷【黃金題型】附答案詳解_第3頁
考點(diǎn)解析北師大版9年級數(shù)學(xué)上冊期末試卷【黃金題型】附答案詳解_第4頁
考點(diǎn)解析北師大版9年級數(shù)學(xué)上冊期末試卷【黃金題型】附答案詳解_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,D,E分別是△ABC的邊AB,AC上的點(diǎn),連接DE,下列條件不能判定△ADE與△ABC相似的是()A.∠ADE=∠B B.∠AED=∠C C. D.2、反比例函數(shù)圖象的兩個分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(

)A. B.C. D.3、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(

)A.2個 B.3個 C.4個 D.5個4、下圖是由六個相同的小正方體搭成的幾何體,這個幾何體從正面看到的圖形是()A.A B.B C.C D.D5、在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(

)A.9人 B.10人 C.11人 D.12人6、若關(guān)于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.2二、多選題(6小題,每小題2分,共計12分)1、如圖,正方形ABCD中,CE平分∠ACB,點(diǎn)F在邊AD上,且AF=BE.連接BF交CE于點(diǎn)G,交AC于點(diǎn)M,點(diǎn)P是線段CE上的動點(diǎn),點(diǎn)N是線段CM上的動點(diǎn),連接PM,PN.下列四個結(jié)論一定成立的是(

)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC2、等腰三角形三邊長分別為a,b,3,且a,b是關(guān)于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.183、如圖,,AD與BC相交于點(diǎn)O,那么在下列比例式中,不正確的是(

)A. B.C. D.4、如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E、F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,以下結(jié)論正確的有(

)A.四邊形CFHE是菱形 B.EC平分∠DCHC.線段BF的取值范圍為3≤BF≤4 D.當(dāng)點(diǎn)H與點(diǎn)A重合時,EF=5、F,且CE:AC=1:則下列結(jié)論正確的有(

)A.△CBE≌△CDEB.DE=FEC.AE=BED.S△BEF=S四邊形ABCD2.具備下列各組條件的兩個三角形中,一定相似的是(

)A.有一個角是40°的兩個等腰三角形 B.兩個等腰直角三角形C.有一個角為100°的兩個等腰三角形 D.兩個等邊三角形6、下列各組圖形中相似的是(

)A.各有一個角是45°的兩個等腰三角形B.各有一個角是60°的兩個等腰三角形C.各有一個角是105°的兩個等腰三角形D.兩個等腰直角三角形第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,已知在平面直角坐標(biāo)系中,直線分別交軸,軸于點(diǎn)和點(diǎn),分別交反比例函數(shù),的圖象于點(diǎn)和點(diǎn),過點(diǎn)作軸于點(diǎn),連結(jié).若的面積與的面積相等,則的值是_____.2、如圖所示,在中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.3、已知關(guān)于x的一元二次方程的一個根比另一個根大2,則m的值為_____.4、如圖,點(diǎn)A是反比例函數(shù)y=(x>0)圖象上的一點(diǎn),AB垂直于x軸,垂足為B,△OAB的面積為6.若點(diǎn)P(a,4)也在此函數(shù)的圖象上,則a=_____.5、如圖,矩形ABCD中,AB=6,BC=8,對角線BD的垂直平分線EF交AD于點(diǎn)E、交BC于點(diǎn)F,則線段EF的長為__.6、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.7、如圖,點(diǎn)E、F分別是矩形ABCD邊BC和CD上的點(diǎn),把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點(diǎn)E的對應(yīng)點(diǎn)H恰好落在對角線BD上,若此時F、G、H三點(diǎn)在同一條直線上,且線段HF與HD也恰好關(guān)于某條直線對稱,則的值為______.8、關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.四、解答題(6小題,每小題10分,共計60分)1、(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.2、如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,與邊AB交于點(diǎn)D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點(diǎn)P(a,0)是x軸上一動點(diǎn),求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點(diǎn)M,平面內(nèi)是否存在點(diǎn)N,使得四邊形CAMN為矩形,若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.3、如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.4、如圖,在平面直角坐標(biāo)系中,一次函數(shù)由函數(shù)平移得到,且與函數(shù)的圖象交于點(diǎn).(1)求一次函數(shù)的表達(dá)式;(2)已知點(diǎn),過點(diǎn)作平行于軸的直線,交直線于點(diǎn),交函數(shù)的圖象于點(diǎn).當(dāng)時,直接寫出的取值范圍.5、如圖,在平面直角坐標(biāo)系中,的三個頂點(diǎn)坐標(biāo)分別為,,.以原點(diǎn)O為位似中心,位似比為,在y軸的左側(cè),畫出將放大后的,并寫出點(diǎn)的坐標(biāo)______.6、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點(diǎn),連接AO,BO,延長AO交反比例函數(shù)圖象于點(diǎn)C.(1)求一次函數(shù)y1的表達(dá)式與反比例函數(shù)y2的表達(dá)式;(2)當(dāng)y1<y2,時,直接寫出自變量x的取值范圍;(3)點(diǎn)P是x軸上一點(diǎn),當(dāng)時,請求出點(diǎn)P的坐標(biāo).-參考答案-一、單選題1、D【解析】【分析】根據(jù)相似三角形的判定定理逐個分析判斷即可.【詳解】解:∵∠ADE=∠B,∴故A能判定△ADE與△ABC相似,不符合題意;∠AED=∠C,∴故B能判定△ADE與△ABC相似,不符合題意;,∴故C能判定△ADE與△ABC相似,不符合題意;,條件未給出,不能判定△ADE與△ABC相似,故D符合題意故選D【考點(diǎn)】本題考查了相似三角形的判定定理,掌握相似三角形的判定定理是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)題意可得,進(jìn)而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負(fù)半軸,且經(jīng)過第一、三、四象限.觀察選項只有D選項符合.故選D【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.3、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個數(shù)有5個,故選D.【考點(diǎn)】本題考查了平行四邊形的判定,菱形的判定與性質(zhì).解題的關(guān)鍵在于證明四邊形ABCD是菱形.4、B【解析】【分析】主視圖就是從正面看到的視圖.【詳解】從正面看,一層三個正方形,左側(cè)由三層正方形.故選B【考點(diǎn)】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.5、C【解析】【分析】設(shè)參加酒會的人數(shù)為x人,每人碰杯次數(shù)為次,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設(shè)參加酒會的人數(shù)為x人,依題可得:x(x-1)=55,化簡得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案為C.【考點(diǎn)】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.6、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關(guān)于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點(diǎn)】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.二、多選題1、ABD【解析】【分析】由SAS可證△BAF≌△CBE,進(jìn)而可證EG⊥BG,即CE⊥BF,故A正確;根據(jù)ASA可證△BCG≌△MCG,知∠CBG=∠CMG,因為∠CBG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可證BE=AM,故B正確;因AB=AE+BE=AE+AM,故C不正確;當(dāng)PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC,因此PM+PN≥AC,故D正確.【詳解】解:∵四邊形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正確;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正確;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正確;連接BP,如圖,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP當(dāng)PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC∴PM+PN≥AC,故D正確綜上所述,一定成立的是ABD,故選:ABD.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),線段的垂直平分線,解題的關(guān)鍵是熟練掌握全等三角形的判定與性質(zhì).2、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當(dāng)3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關(guān)系確定此種情況存在,再利用根與系數(shù)的關(guān)系即可求得的值;當(dāng)3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數(shù)的關(guān)系即可求得的值.【詳解】解:當(dāng)3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當(dāng)3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點(diǎn)】本題考查了一元二次方程根與系數(shù)的關(guān)系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關(guān)鍵.3、ABD【解析】【分析】先判斷三角形相似,再根據(jù)相似三角形的對應(yīng)邊成比例,則可判斷A、B、C的正確性,根據(jù)基本事實,一組平行線被兩條直線所截的對應(yīng)線段成比例,判斷D的正確性.【詳解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正確;故B不正確;故C正確;∵,∴即故D不正確;故選:ABD.【考點(diǎn)】本題考查了相似三角形的判定和相似三角形的性質(zhì)以及基本事實的應(yīng)用,根據(jù)性質(zhì)找到對應(yīng)的邊成比例是解答此題的關(guān)鍵.4、ACD【解析】【分析】先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明即可判斷出A正確;根據(jù)菱形的對角線平分一組對角可得∠BCH=∠ECH,然后求出只有∠DCE=30°時EC平分∠DCH,即可判斷出B錯誤;點(diǎn)H與點(diǎn)A重合時,設(shè)BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,點(diǎn)G與點(diǎn)D重合時,CF=CD,求出BF=4,然后寫出BF的取值范圍,即可判斷出C正確;過點(diǎn)F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,即可判斷出D正確.【詳解】解:∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,∴FH∥CG,EH∥CF,∴四邊形CFHE是平行四邊形,由翻折的性質(zhì)得,CF=FH,∴四邊形CFHE是菱形,故A正確;∵四邊形CFHE是菱形,∴∠BCH=∠ECH,∴只有∠DCE=30°時EC平分∠DCH,故B錯誤;點(diǎn)H與點(diǎn)A重合時,設(shè)BF=x,則AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,點(diǎn)G與點(diǎn)D重合時,CF=CD=4,∴BF=4,∴線段BF的取值范圍為3≤BF≤4,故C正確;如圖,過點(diǎn)F作FM⊥AD于M,則ME=(8-3)-3=2,由勾股定理得,EF=,故D正確;故選ACD.【考點(diǎn)】本題考查了菱形的判定和性質(zhì),矩形的性質(zhì),翻折的性質(zhì),勾股定理,掌握知識點(diǎn)是解題關(guān)鍵.5、BCD【解析】【分析】根據(jù)相似三角形的判定方法一一判斷即可.【詳解】A.有一個角是40°的兩個等腰三角形,當(dāng)40°的角為等腰三角形的底角,當(dāng)40°的角為等腰三角形頂角,兩個三角形內(nèi)角分別為40°、40°、100°和40°、70°、70°,則兩三角形不相似,故選項A不合題意B.等腰直角三角形的內(nèi)角均為45°,45°,90°,根據(jù)三角形相似判定方法等腰直角三角形有兩組角對應(yīng)相等,兩個三角形相似,一定相似,故選項B符合題意;C.∵100°>90°,∴100°的角只能是等腰三角形的頂角,另兩個角分別為40°,40°,根據(jù)三角形相似判定定理,有兩組角對應(yīng)相等的三角形相似,故選項C符合題意;D.∵等邊三角形的內(nèi)角都是60°,根據(jù)三角形相似判定定理,兩個等邊三角形有兩個角對應(yīng)相等,兩個三角形相似,故選項D符合題意.故選:BCD.【考點(diǎn)】考查相似三角形的判定方法,掌握相似三角形判定的4種方法是解題的關(guān)鍵.6、BCD【解析】【分析】根據(jù)相似三角形的判定方法和等腰三角形的性質(zhì)進(jìn)行解答即可得.【詳解】解:A、沒有指明這個的角是頂角還是底角,則無法判定其相似,選項說法錯誤,不符合題意;B、有一個角為的等腰三角形是等邊三角形,根據(jù)三組對應(yīng)邊的比相等的兩個三角形相似判定這兩個三角形相似,選項說法正確,符合題意;C、已知一個角為的等腰三角形,我們可以判定其為頂角,頂角相等且兩條腰對應(yīng)成比例則這兩個三角形相似,選項說法正確,符合題意;D、兩個等腰直角三角形,可以根據(jù)兩組對應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個三角形相似來判定這兩個三角形相似,選項說法正確,符合題意;故選BCD.【考點(diǎn)】本題考查了相似三角形,解題的根據(jù)是掌握相似三角形的判定和等腰三角形的性質(zhì).三、填空題1、2.【解析】【分析】過點(diǎn)作軸于.根據(jù)k的幾何意義,結(jié)合三角形面積之間的關(guān)系,求出交點(diǎn)D的坐標(biāo),代入即可求得k的值.【詳解】如圖,過點(diǎn)作軸于.把y=0代入得:x=2,故OA=2由反比例函數(shù)比例系數(shù)的幾何意義,可得,.∵,

∴,∴.易證,從而,即的橫坐標(biāo)為,而在直線上,∴∴.故答案為2【考點(diǎn)】本題是一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,主要考查了一次函數(shù)和反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)“k“的幾何意義,一次函數(shù)圖象與反比例函數(shù)圖象的交點(diǎn)問題,關(guān)鍵是根據(jù)兩個三角形的面積相等列出k的方程.2、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點(diǎn)C作CN⊥AB,垂足為N,交GF于點(diǎn)M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點(diǎn)M,交AB于點(diǎn)N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點(diǎn)C作CN⊥AB,垂足為N,交GF于點(diǎn)M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點(diǎn)】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.3、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關(guān)系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點(diǎn)】此題主要考查解一元二次方程,解題的關(guān)鍵是熟知因式分解法的運(yùn)用.4、3【解析】【分析】根據(jù)反比例函數(shù)的幾何意義,可得,從而得到,再將點(diǎn)P(a,4)代入解析式,即可求解.【詳解】解:∵點(diǎn)A是反比例函數(shù)y=(x>0)圖象上的一點(diǎn),AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數(shù)的解析式為,∵點(diǎn)P(a,4)也在此函數(shù)的圖象上,∴,解得:.故答案為:3【考點(diǎn)】本題主要考查了反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.5、【解析】【分析】根據(jù)矩形的性質(zhì)和勾股定理求出BD,證明△BOF∽△BCD,根據(jù)相似三角形的性質(zhì)得到比例式,求出EF即可.【詳解】解:如下圖,∵四邊形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分線,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四邊形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分線,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案為:.【考點(diǎn)】本題考查的是矩形的性質(zhì)、線段垂直平分線的性質(zhì)以及勾股定理的應(yīng)用,解題的關(guān)鍵是掌握矩形的四個角是直角、對邊相等以及線段垂直平分線的定義.6、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點(diǎn)】本題考查菱形的對角線問題,掌握菱形的性質(zhì),利用對角線之間的關(guān)系,和勾股定理構(gòu)造方程是解題關(guān)鍵.7、【解析】【分析】根據(jù)線段HF與HD也恰好關(guān)于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設(shè)元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關(guān)于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設(shè)GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點(diǎn)】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關(guān)鍵是掌握翻折的性質(zhì).8、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關(guān)于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點(diǎn)】考查一元二次方程根的判別式,當(dāng)時,方程有兩個不相等的實數(shù)根.當(dāng)時,方程有兩個相等的實數(shù)根.當(dāng)時,方程沒有實數(shù)根.四、解答題1、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設(shè)BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點(diǎn)】本題考查了正方形、矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,正確尋找全等三角形或相似三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,是解題的關(guān)鍵.2、(1)(2)|PC?PD|最大時a的值為6(3)存在,點(diǎn)M的坐標(biāo)為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點(diǎn)C坐標(biāo),最后用待定系數(shù)法即可得出結(jié)論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點(diǎn)D的坐標(biāo),再根據(jù)三角形關(guān)系可得出當(dāng)點(diǎn)P,C,D三點(diǎn)共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點(diǎn)需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點(diǎn)C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點(diǎn)C在反比例函數(shù)圖象上,∴k=2×2=4,∴反比例函數(shù)解析式為y=;(2)解:∵點(diǎn)C(2,2),點(diǎn)O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點(diǎn)A坐標(biāo)為(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴點(diǎn)B(5,2),∴設(shè)AB解析式為:y=x+b,∴2=5+b,∴b=-3,∴AB解析式為:y=x-3,聯(lián)立方程組可得:,∴或(舍去),∴點(diǎn)D(4,1);在△PCD中,|PC-PD|<CD,則當(dāng)點(diǎn)P,C,D三點(diǎn)共線時,|PC-PD|=CD,此時,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),設(shè)直線CD的解析式為:y=mx+n,∴,解得,∴直線CD的解析式為:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大時a的值為6;(3)(3)存在,理由如下:若四邊形CAMN為矩形,則△CAM是直角三角形,則①當(dāng)點(diǎn)A為直角頂點(diǎn)時,如圖2,過點(diǎn)A作AC的垂線與y=交于點(diǎn)M,分別過點(diǎn)C,M作x軸的垂線,垂足分別為點(diǎn)F,G,由“一線三等角”模型可得△AFC∽△MGA,則AF:MG=CF:AG,∵C(2,2),A(3,0),∴OF=CF=2,AF=1,∴1:MG=2:AG,即MG:AG=1:2,設(shè)MG=t,則AG=2t,∴M(2t+3,t),∵點(diǎn)M在反比例函數(shù)y=的圖象上,則t(2t+3)=4,解得t=,(負(fù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論