四川省德陽市第五中學(xué)2025年數(shù)學(xué)高三第一學(xué)期期末預(yù)測試題_第1頁
四川省德陽市第五中學(xué)2025年數(shù)學(xué)高三第一學(xué)期期末預(yù)測試題_第2頁
四川省德陽市第五中學(xué)2025年數(shù)學(xué)高三第一學(xué)期期末預(yù)測試題_第3頁
四川省德陽市第五中學(xué)2025年數(shù)學(xué)高三第一學(xué)期期末預(yù)測試題_第4頁
四川省德陽市第五中學(xué)2025年數(shù)學(xué)高三第一學(xué)期期末預(yù)測試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省德陽市第五中學(xué)2025年數(shù)學(xué)高三第一學(xué)期期末預(yù)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點成中心對稱2.已知,則()A.5 B. C.13 D.3.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.4.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.45.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.46.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.7.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.8.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是9.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形10.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.11.已知正方體的棱長為2,點在線段上,且,平面經(jīng)過點,則正方體被平面截得的截面面積為()A. B. C. D.12.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.如果復(fù)數(shù)滿足,那么______(為虛數(shù)單位).14.甲、乙、丙、丁四名同學(xué)報名參加淮南文明城市創(chuàng)建志愿服務(wù)活動,服務(wù)活動共有“走進社區(qū)”、“環(huán)境監(jiān)測”、“愛心義演”、“交通宣傳”等四個項目,每人限報其中一項,記事件為“4名同學(xué)所報項目各不相同”,事件為“只有甲同學(xué)一人報走進社區(qū)項目”,則的值為______.15.在的二項展開式中,所有項的二項式系數(shù)之和為256,則_______,項的系數(shù)等于________.16.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為(t為參數(shù),α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C有唯一的公共點,求角α的大?。?8.(12分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).19.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標(biāo)為(2,1),設(shè)直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.20.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)討論函數(shù)f(x)的極值點的個數(shù);(2)若f(x)有兩個極值點證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關(guān)于點成中心對稱.故選B.本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運算與求解能力,屬于基礎(chǔ)題.2.C【解析】

先化簡復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C考查復(fù)數(shù)的運算,是基礎(chǔ)題.3.D【解析】

如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計算能力.4.A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題5.C【解析】

由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.6.B【解析】

每個式子的值依次構(gòu)成一個數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項歸納出遞推關(guān)系,從而可確定數(shù)列的一些項.7.D【解析】

根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.8.B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.9.C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當(dāng)時,為直角三角形;當(dāng)時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.本題考查三角形形狀的判斷,考查正弦定理的運用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.10.A【解析】

分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.11.B【解析】

先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.12.D【解析】

根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡,然后利用復(fù)數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)的模的求法,屬于基礎(chǔ)題.14.【解析】

根據(jù)條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據(jù)題意得所以故答案為:本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.15.81【解析】

根據(jù)二項式系數(shù)和的性質(zhì)可得n,再利用展開式的通項公式求含項的系數(shù)即可.【詳解】由于所有項的二項式系數(shù)之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數(shù)等于,故答案為:8;1.本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.16.【解析】

利用等差數(shù)列的通項公式以及等比中項的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.本題考查等差數(shù)列通項公式以及等比中項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)當(dāng)時,直線l方程為x=-1;當(dāng)時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】

(1)對直線l的傾斜角分類討論,消去參數(shù)即可求出其普通方程;由,即可求出曲線C的直角坐標(biāo)方程;(2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,根據(jù)條件Δ=0,即可求解.【詳解】(1)當(dāng)時,直線l的普通方程為x=-1;當(dāng)時,消去參數(shù)得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標(biāo)方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直線l的傾斜角α為或.本題考查參數(shù)方程化普通方程,極坐標(biāo)方程化直角坐標(biāo)方程,考查直線與曲線的關(guān)系,屬于中檔題.18.(1);(2).【解析】

(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立方程求解;(2)依據(jù)新定義,討論的單調(diào)性,列出方程求解即可?!驹斀狻浚?)當(dāng)時,由復(fù)合函數(shù)單調(diào)性知,在區(qū)間上是增函數(shù),即有,解得;同理,當(dāng)時,有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調(diào)函數(shù),①當(dāng)在上是單調(diào)增函數(shù),則,解得,檢驗符合;②當(dāng)在上是單調(diào)減函數(shù),則,解得,在上不是單調(diào)函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有。本題主要考查學(xué)生的應(yīng)用意識,利用所學(xué)知識分析解決新定義問題。19.(1)(2)k1+k2為定值0,見解析【解析】

(1)利用已知條件直接求解,得到橢圓的方程;(2)設(shè)直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯(lián)立,設(shè),利用韋達定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設(shè)直線在軸上的截距為,所以直線的方程為:,由得:,由得,設(shè),則,所以,又,所以,故.本題主要考查了橢圓的標(biāo)準(zhǔn)方程的求解,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查了方程的思想,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.20.(1)見解析,(2)【解析】

(1)根據(jù)等差中項的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.考查等差中項的定義和分組求和的方法;中檔題.21.(1);(2).【解析】

若補充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點,建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論