版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省長(zhǎng)春市汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2025年數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知焦點(diǎn)為的拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,則當(dāng)取得最大值時(shí),直線的方程為()A.或 B.或 C.或 D.2.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=03.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.4.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁5.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.6.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.7.函數(shù)的圖像大致為()A. B.C. D.8.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.9.已知是虛數(shù)單位,若,則()A. B.2 C. D.1010.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.11.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-312.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),分別是橢圓C:()的左、右焦點(diǎn),直線l過交橢圓C于A,B兩點(diǎn),交y軸于E點(diǎn),若滿足,且,則橢圓C的離心率為______.14.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于_____.15.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.16.已知拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,直線與交于,兩點(diǎn),若,則實(shí)數(shù)__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開展愛國(guó)衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,,,,,的大小關(guān)系.18.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求的值;(2)若,求的面積.19.(12分)已知等差數(shù)列的前n項(xiàng)和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)已知,求數(shù)列的前n項(xiàng)和.20.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對(duì)稱軸方程為且,求的值.21.(12分)某芯片公司對(duì)今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測(cè)評(píng),該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測(cè)試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測(cè)。若3個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評(píng)分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評(píng)分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測(cè),二測(cè)時(shí),2個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評(píng)分沒達(dá)到11萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測(cè)試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測(cè)試,現(xiàn)手機(jī)公司測(cè)試部門預(yù)算的測(cè)試經(jīng)費(fèi)為10萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測(cè)試完這100顆芯片?請(qǐng)說明理由.22.(10分)如圖,三棱臺(tái)的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線相切,易知此時(shí)直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.2.A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點(diǎn)評(píng):本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.3.A【解析】
設(shè),延長(zhǎng)至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長(zhǎng)至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.4.A【解析】
可采用假設(shè)法進(jìn)行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個(gè)人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進(jìn)行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.5.D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)椋杂校菏欠匠痰亩?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.6.D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對(duì)選項(xiàng)逐個(gè)判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對(duì)稱;在,上單調(diào)遞增,且在時(shí)使得;又,,所以選項(xiàng)成立;,比離對(duì)稱軸遠(yuǎn),可得,選項(xiàng)成立;,,可知比離對(duì)稱軸遠(yuǎn),選項(xiàng)成立;,符號(hào)不定,,無法比較大小,不一定成立.故選:.本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.7.A【解析】
根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)椋愠闪?,排除,,?dāng)時(shí),,當(dāng),,排除,故選:.本題主要考查函數(shù)圖象的識(shí)別和判斷,利用函數(shù)值的符號(hào)以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8.A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.9.C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計(jì)算即可.【詳解】因?yàn)?,所以,,故選:C本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.10.A【解析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.11.B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.12.B【解析】
利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
采用數(shù)形結(jié)合,計(jì)算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡(jiǎn)可得:則故答案為:本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長(zhǎng)度,考查分析能力以及計(jì)算能力,屬中檔題.14.2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點(diǎn),即求.【詳解】不妨設(shè)點(diǎn)P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn)∴,.∵M(jìn),N分別為PQ,PF的中點(diǎn),∴,∵PQ垂直l于點(diǎn)Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點(diǎn),∴,故答案為:2.本題主要考查拋物線的定義,屬于基礎(chǔ)題.15.【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.16.【解析】
由于直線過拋物線的焦點(diǎn),因此過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對(duì)稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點(diǎn),,過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因?yàn)椋裕驗(yàn)?,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對(duì)稱性還有滿足題意.,綜上,.本題考查拋物線的性質(zhì),考查拋物線的焦點(diǎn)弦問題,掌握拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離與它到距離聯(lián)系起來是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)(3)【解析】
(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可.【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“則.所以該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣至少具備2個(gè)良好習(xí)慣的概率為0.766.(3).本題考查了古典概型求概率,獨(dú)立性事件,互斥性事件求概率等,考查運(yùn)算能力和事件應(yīng)用能力,中檔題.18.(1);(2).【解析】
(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.19.(1),();(2).【解析】
(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個(gè)方程即可求出,從而求得,代入化簡(jiǎn)即可求得;(2)化簡(jiǎn)后求和為裂項(xiàng)相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當(dāng)時(shí),.②當(dāng)時(shí),.此題等差數(shù)列的通項(xiàng)公式的求解,裂項(xiàng)相消求和等知識(shí)點(diǎn),考查了化歸和轉(zhuǎn)化思想,屬于一般性題目.20.(1)(2)【解析】
(1)由已知利用三角函數(shù)恒等變換的應(yīng)用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應(yīng)用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進(jìn)而求得的值,利用三角函數(shù)恒等變換的應(yīng)用可求的值.【詳解】(1)由題意,根據(jù)正弦定理,可得,又由,所以,可得,即,又因?yàn)椋瑒t,可得,∵,∴.(2)由(1)可得,所以函數(shù)的圖象的一條對(duì)稱軸方程為,∴,得,即,∴,又,∴,∴.本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.21.(1)(2)預(yù)算經(jīng)費(fèi)不夠測(cè)試完這100顆芯片,理由見解析【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)健康促進(jìn)醫(yī)療合規(guī)管理體系
- 馬鞍山2025年安徽馬鞍山博望區(qū)公辦小學(xué)勞務(wù)派遣制教師招聘教師16人筆試歷年參考題庫(kù)附帶答案詳解
- 襄陽(yáng)2025年湖南襄陽(yáng)市南漳縣人民醫(yī)院招聘17人筆試歷年參考題庫(kù)附帶答案詳解
- 職業(yè)傳染病防控中的信息化管理平臺(tái)
- 深圳2025年廣東深圳市南山區(qū)博士選聘10人筆試歷年參考題庫(kù)附帶答案詳解
- 河源2025年廣東河源江東新區(qū)招聘事業(yè)編制教師31人筆試歷年參考題庫(kù)附帶答案詳解
- 株洲2025年湖南株洲市淥口區(qū)職業(yè)中等專業(yè)學(xué)校兼職專業(yè)教師招聘11人筆試歷年參考題庫(kù)附帶答案詳解
- 新疆2025年中國(guó)地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招聘41人筆試歷年參考題庫(kù)附帶答案詳解
- 德州2025年山東德州慶云縣第一中學(xué)招聘教師4人筆試歷年參考題庫(kù)附帶答案詳解
- 山西2025年山西職業(yè)技術(shù)學(xué)院招聘15人筆試歷年參考題庫(kù)附帶答案詳解
- GJB1406A-2021產(chǎn)品質(zhì)量保證大綱要求
- 醫(yī)院培訓(xùn)課件:《高血壓的診療規(guī)范》
- 口腔種植醫(yī)生進(jìn)修匯報(bào)
- 特教數(shù)學(xué)教學(xué)課件
- 2025年云南省中考化學(xué)試卷真題(含標(biāo)準(zhǔn)答案及解析)
- 華為干部培訓(xùn)管理制度
- 職業(yè)技術(shù)學(xué)院2024級(jí)智能網(wǎng)聯(lián)汽車工程技術(shù)專業(yè)人才培養(yǎng)方案
- 父母贈(zèng)與協(xié)議書
- 供應(yīng)鏈危機(jī)應(yīng)對(duì)預(yù)案
- 3萬噸特高壓及以下鋼芯鋁絞線鋁包鋼芯絞線項(xiàng)目可行性研究報(bào)告寫作模板-拿地備案
- 砌筑工技能競(jìng)賽理論考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論