考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷及完整答案詳解【易錯(cuò)題】_第1頁
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷及完整答案詳解【易錯(cuò)題】_第2頁
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷及完整答案詳解【易錯(cuò)題】_第3頁
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷及完整答案詳解【易錯(cuò)題】_第4頁
考點(diǎn)解析-滬科版9年級(jí)下冊(cè)期末試卷及完整答案詳解【易錯(cuò)題】_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),PA=4,則PB的長度為()A.3 B.4 C.5 D.62、如圖,在矩形ABCD中,點(diǎn)E在CD邊上,連接AE,將沿AE翻折,使點(diǎn)D落在BC邊的點(diǎn)F處,連接AF,在AF上取點(diǎn)O,以O(shè)為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點(diǎn)G,H,連接FG,GH.則下列結(jié)論錯(cuò)誤的是()A. B.四邊形EFGH是菱形C. D.3、同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.4、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°5、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形6、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.7、如圖,在中,,,,將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.8、如圖是下列哪個(gè)立體圖形的主視圖()A. B.C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機(jī)抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.2、某射擊運(yùn)動(dòng)員在同一條件下的射擊成績記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過計(jì)算頻率,估計(jì)這名運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).3、從﹣2,1兩個(gè)數(shù)中隨機(jī)選取一個(gè)數(shù)記為m,再從﹣1,0,2三個(gè)數(shù)中隨機(jī)選取一個(gè)數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個(gè)不相等的實(shí)數(shù)根的概率是_____.4、把一個(gè)正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.5、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關(guān)系是__________.6、點(diǎn)P為邊長為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線段BP上一動(dòng)點(diǎn),將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.7、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,已知AB是的直徑,點(diǎn)D為弦BC中點(diǎn),過點(diǎn)C作切線,交OD延長線于點(diǎn)E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.2、在平面直角坐標(biāo)系xOy中,給出如下定義:若點(diǎn)P在圖形M上,點(diǎn)Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點(diǎn),規(guī)定d(M,N)=0.已知:如圖,點(diǎn)A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動(dòng)點(diǎn),⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.3、將銳角為45°的直角三角板MPN的一個(gè)銳角頂點(diǎn)P與正方形ABCD的頂點(diǎn)A重合,正方形ABCD固定不動(dòng),然后將三角板繞著點(diǎn)A旋轉(zhuǎn),∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點(diǎn)E、F,連接EF.(1)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC相交時(shí),如圖1所示,請(qǐng)直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(2)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時(shí),如圖2所示,請(qǐng)直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(3)若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的一邊恰好經(jīng)過BC邊的中點(diǎn)時(shí),試求線段EF的長.4、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.5、如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點(diǎn)F,AC與OD相交于點(diǎn)E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長.6、新冠病毒在全球肆虐,疫情防控刻不容緩.某校為了解學(xué)生對(duì)新冠疫情防控知識(shí)的了解程度,組織七、八年級(jí)學(xué)生開展新冠疫情防控知識(shí)測(cè)試(滿分為10分).學(xué)校學(xué)生處從七、八年級(jí)學(xué)生中各隨機(jī)抽取了20名學(xué)生的成績進(jìn)行了統(tǒng)計(jì).下面提供了部分信息.抽取的20名七年級(jí)學(xué)生的成績(單位:分)為:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名學(xué)生成績分析表:年級(jí)七年級(jí)八年級(jí)平均分88.1眾數(shù)8b中位數(shù)a8方差1.91.89請(qǐng)根據(jù)以上信息,解答下列問題:(1)直接寫出上表中a,b的值;(2)該校七、八年級(jí)共有學(xué)生2000人,估計(jì)此次測(cè)試成績不低于9分的學(xué)生有多少人?(3)在所抽取的七年級(jí)與八年級(jí)得10分的學(xué)生中,隨機(jī)抽取2名學(xué)生在全校學(xué)生大會(huì)上進(jìn)行新冠疫情防控知識(shí)宣講,求所抽取的2名學(xué)生恰好是1名七年級(jí)學(xué)生和1名八年級(jí)學(xué)生的概率.7、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點(diǎn)E,并與AM,BN分別相交于D,C兩點(diǎn).設(shè),,求y關(guān)于x的函數(shù)解析式.-參考答案-一、單選題1、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點(diǎn),∴,,∴在和中,,∴,∴.故選:B【點(diǎn)睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.2、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進(jìn)而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對(duì)A作出判斷;接下來延長EF與AB交于點(diǎn)N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對(duì)B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對(duì)C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點(diǎn)G、H分別是切點(diǎn),∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點(diǎn)N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯(cuò)誤,符合題意.故選C.【點(diǎn)睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關(guān)鍵.3、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點(diǎn)睛】本題考查了列舉法求概率的知識(shí).此題比較簡(jiǎn)單,注意在利用列舉法求解時(shí),要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.4、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形中對(duì)角互補(bǔ).解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.5、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握?qǐng)D形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.6、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點(diǎn)睛】本題考查了圓周角性質(zhì),利用同弧所對(duì)圓周角性質(zhì)與直徑所對(duì)圓周角性質(zhì),30°角所對(duì)直角三角形性質(zhì),掌握?qǐng)A周角性質(zhì),利用同弧所對(duì)圓周角性質(zhì)與直徑所對(duì)圓周角性質(zhì),30°角所對(duì)直角三角形性質(zhì)是解題的關(guān)鍵.7、C【分析】過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進(jìn)而得到∴,可得到點(diǎn),再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點(diǎn),∴將繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是,∴將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是.故選:C【點(diǎn)睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識(shí),解題的關(guān)鍵是求出點(diǎn)A的坐標(biāo),屬于中考??碱}型.8、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.二、填空題1、【分析】抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點(diǎn)數(shù)小于5的概率.【詳解】解:∵抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點(diǎn)數(shù)小于5的概率是:.故答案為:.【點(diǎn)睛】此題主要考查了概率的求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.2、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.3、【分析】先畫樹狀圖列出所有等可能結(jié)果,從中找到使方程有兩個(gè)不相等的實(shí)數(shù)根,即m>n的結(jié)果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結(jié)果,其中能使方程x2-mx+n=0有兩個(gè)不相等的實(shí)數(shù)根,即m2-4n>0,m2>4n的結(jié)果有4種結(jié)果,∴關(guān)于x的一元二次方程x2-mx+n=0有兩個(gè)不相等的實(shí)數(shù)根的概率是,故答案為:.【點(diǎn)睛】本題是概率與一元二次方程的根的判別式相結(jié)合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關(guān)鍵.4、60【分析】正六邊形連接各個(gè)頂點(diǎn)和中心,這些連線會(huì)將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點(diǎn)睛】本題考查中心對(duì)稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.5、相切【分析】過點(diǎn)C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關(guān)系是相切.【詳解】解:過點(diǎn)C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關(guān)系是相切.故答案為:相切.【點(diǎn)睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關(guān)鍵.6、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動(dòng),且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識(shí)轉(zhuǎn)化線段是解題的關(guān)鍵.7、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點(diǎn)睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活運(yùn)用所學(xué)知識(shí)解決問題.三、解答題1、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運(yùn)用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說明BE⊥AB即可證明.(1)證明:∵點(diǎn)D為弦BC中點(diǎn)∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點(diǎn)睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識(shí)點(diǎn),掌握垂徑定理是解答本題的關(guān)鍵.2、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時(shí)最小,當(dāng)⊙O的半徑等于OB時(shí)最大,即可求解;(3)過點(diǎn)C作CN⊥AB于點(diǎn)N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點(diǎn)C在點(diǎn)A的右側(cè)時(shí),當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點(diǎn)A在⊙O上,點(diǎn)B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,∵點(diǎn)A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當(dāng)⊙O的半徑等于OD時(shí)最小,當(dāng)⊙O的半徑等于OB時(shí)最大,∴r的取值范圍是,(3)如圖,過點(diǎn)C作CN⊥AB于點(diǎn)N,∵點(diǎn)A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當(dāng)點(diǎn)C在點(diǎn)A的右側(cè)時(shí),,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),,此時(shí)d(⊙C,線段AB)=0,當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),,∴,∴,解得:,∴.【點(diǎn)睛】本題主要考查了點(diǎn)與圓的位置關(guān)系,點(diǎn)與直線的位置關(guān)系,理解新定義,熟練掌握點(diǎn)與圓的位置關(guān)系,點(diǎn)與直線的位置關(guān)系是解題的關(guān)鍵.3、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再證△HAF≌EAF即可;(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)結(jié)論:EF=BE+DF.理由:延長FD至G,使DG=BE,連接AG,如圖①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)結(jié)論:EF=DF-BE.理由:在DC上截取DH=BE,連接AH,如圖②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①當(dāng)MA經(jīng)過BC的中點(diǎn)E時(shí),同(1)作輔助線,如圖:設(shè)FD=x,由(1)的結(jié)論得FG=EF=2+x,F(xiàn)C=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②當(dāng)NA經(jīng)過BC的中點(diǎn)G時(shí),同(2)作輔助線,設(shè)BE=x,由(2)的結(jié)論得EC=4+x,EF=FH,∵K為BC邊的中點(diǎn),∴CK=BC=2,同理可證△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.綜上,線段EF的長為或.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用旋轉(zhuǎn)法添加輔助線,構(gòu)造全等三角形解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.4、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點(diǎn)M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=BF=2,可得到CM=OM,進(jìn)而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點(diǎn)M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點(diǎn)O為AB的中點(diǎn),∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點(diǎn)睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.5、(1)見解析;(2)CD=,EF=1.【分析】(1)連接OC,根據(jù)圓的性質(zhì),得到OB=OC;根據(jù)等腰三角形的性質(zhì),得到;根據(jù)平行線的性質(zhì),得到;在同圓和等圓中,根據(jù)相等的圓心解所對(duì)的弧等即得證.(2)根據(jù)直徑所對(duì)的圓周角是直角求出∠ACB=90°,根據(jù)平行線的性質(zhì)求得∠AEO=∠ACB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論