考點解析河北省辛集市中考數(shù)學真題分類(勾股定理)匯編專項練習試題(含答案解析)_第1頁
考點解析河北省辛集市中考數(shù)學真題分類(勾股定理)匯編專項練習試題(含答案解析)_第2頁
考點解析河北省辛集市中考數(shù)學真題分類(勾股定理)匯編專項練習試題(含答案解析)_第3頁
考點解析河北省辛集市中考數(shù)學真題分類(勾股定理)匯編專項練習試題(含答案解析)_第4頁
考點解析河北省辛集市中考數(shù)學真題分類(勾股定理)匯編專項練習試題(含答案解析)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北省辛集市中考數(shù)學真題分類(勾股定理)匯編專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,△OAB的頂點O(0,0),頂點A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點A的坐標是(

)A. B. C. D.2、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個小正方形的邊長均為1),點A,B,C恰好在網(wǎng)格圖中的格點上,那么△ABC中BC邊上的高是(

)A. B. C. D.3、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(

)A.6 B.8 C.9 D.154、如圖,長方形中,,,將此長方形折疊,使點與點重合,折痕為,則的長為(

)A.12 B.8 C.10 D.135、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長是(

)A.3cm B.6cm C.4cm D.5cm6、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結論:①;②;③;④;⑤若,則.其中正確的結論有(

)A.2個 B.3個 C.4個 D.5個7、《九章算術》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠,問折斷處離地面的高度是多少?設折斷處離地面的高度為尺,則可列方程為(

)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.2、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東方向上的B處,此時B處與燈塔P的距離為___________海里(結果保留根號).3、如圖,將矩形紙片ABCD沿EF折疊,使D點與BC邊的中點D′重合.若BC=8,CD=6,則CF的長為_________________.4、如圖,已知中,,,動點M滿足,將線段繞點C順時針旋轉得到線段,連接,則的最小值為_________.5、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.6、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.7、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.8、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為17米,幾分鐘后船到達點D的位置,此時繩子CD的長為10米,問船向岸邊移動了__米.三、解答題(7小題,每小題10分,共計70分)1、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關系,并證明你的結論.2、我們知道,到線段兩端距離相等的點在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.(1)如圖1,點P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點P是△APD的準外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準外心P在△ABC的直角邊上,試求AP的長.3、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當n>1時,n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ354、如圖,在△ABC中,∠C=90°,M是BC的中點,MD⊥AB于D,求證:.5、如圖是一個長方形的大門,小強拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.6、如圖,,兩個工廠位于一段直線形河道的異側,工廠至河道的距離為,工廠至河道的距離為,經(jīng)測量河道上、兩地間的距離為,現(xiàn)準備在河邊某處(河寬不計)修一個污水處理廠.(1)設,請用的代數(shù)式表示的長______;(結果保留根號)(2)為了使,兩廠到污水處理廠的排污管道之和最短,請在圖中畫出污水廠位置,并求出排污管道最短長度?(3)通過以上的解答,充分展開聯(lián)想,運用數(shù)形結合思想,請你求出的最小值為多少?7、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.-參考答案-一、單選題1、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點A的坐標是(4,3),故選:D.【考點】本題考查了坐標與圖形,全等三角形的判定和性質,勾股定理,解題的關鍵是靈活運用所學知識解決問題.2、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設BC邊上的高為h,則,∴.故選A.點睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長,并用勾股定理的逆定理來判斷三角形是否是直角三角形是解題的關鍵.3、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應用,掌握勾股定理的應用并能得出平面展開圖是解題的關鍵.4、D【解析】【分析】設BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進而可以求解.5、D【解析】【分析】根據(jù)正方形的面積可以得到BC2=8,AC2=17,然后根據(jù)勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點】本題考查正方形的面積、勾股定理,解答本題的關鍵是明確正方形的面積是邊長的平方.6、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,勾股定理等知識,熟練掌握相關知識點是解題的關鍵.7、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點】本題考查勾股定理的方程思想,解題的關鍵是根據(jù)題意利用勾股定理列出方程.二、填空題1、+24【解析】【分析】連結BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個三角形面積相加即可.【詳解】解:連結BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.2、.【解析】【分析】先作PC⊥AB于點C,然后利用勾股定理進行求解即可.【詳解】解:如圖,作PC⊥AB于點C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點】此題主要考查了勾股定理的應用-方向角問題,求三角形的邊或高的問題一般可以轉化為用勾股定理解決問題,解決的方法就是作高線.3、【解析】【分析】設,在中利用勾股定理求出x即可解決問題.【詳解】解:∵是的中點,,,∴,由折疊的性質知:,設,則,在中,根據(jù)勾股定理得:,即:,解得,∴.故答案為:【考點】本題考查翻折變換、勾股定理,解題的關鍵是利用翻折不變性解決問題,學會轉化的思想,利用方程的去思考問題,屬于中考??碱}型.4、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關系得出當點N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點C順時針旋轉得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點】本題考查了全等三角形的判定與性質,勾股定理,解題關鍵是證明三角形全等,得出,根據(jù)三角形三邊關系取得最小值.5、29【解析】【分析】如圖(見解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點】本題考查了勾股定理的應用,熟練掌握勾股定理是解題關鍵.6、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.7、【解析】【分析】首先根據(jù)BC,AC的比設出BC,AC,然后利用勾股定理列式計算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關鍵.8、9.【解析】【分析】在Rt△ABC中,利用勾股定理計算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點】本題考查了勾股定理的應用,關鍵是掌握從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.三、解答題1、(1)BD=1m;(2)CE與BE的大小關系是CE=BE,證明見解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點,∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點】本題考查了勾股定理,等腰三角形的性質和判定,全等三角形的判定與性質等,能靈活運用勾股定理進行計算是解(1)的關鍵,能求出∠DCO=∠ABO和OC=OB是解(2)的關鍵.2、(1)見解析;(2)AP的長為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點P是△APD的準外心;(2)先利用勾股定理計算AC=4,再進行討論:當P點在AB上,PA=PB,當P點在AC上,PA=PC,易得對應AP的值;當P點在AC上,PB=PC,設AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時AP的長.【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點P是△APD的準外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當P點在AB上,PA=PB,則APAB;當P點在AC上,PA=PC,則APAC=2,當P點在AC上,PB=PC,如圖2,設AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時AP,綜上所述,AP的長為或2或.【考點】本題考查了全等三角形的判定與性質,勾股定理及新定義的運用能力.理解題中給的定義是解題的關鍵.3、A=(n2+1)2,B=n2+1,15,17;12,37【解析】【分析】先根據(jù)整式的混合運算法則求出A,進而求出B,再把n的值代入即可解答.【詳解】A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,當2n=8時,n=4,n2﹣1=42﹣1=15,n2+1=42+1=17;當n2﹣1=35時,n=±6(負值舍去),2n=2×6=12,n2+1=37.直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ15817勾股數(shù)組Ⅱ351237故答案為:15,17;12,37.【考點】本題考查了勾股數(shù)的定義及勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.4、見解析【解析】【分析】連接AM得到三個直角三角形,運用勾股定理分別表示出AD2、AM2、BM2進行代換就可以最后得到所要證明的結果.【詳解】證明:連接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M為BC中點,∴BM=MC.∴AD2=AC2+BD2【考點】本題考查了勾股定理,三次運用勾股定理進行代換計算即可求出結果,另外準確作出輔助線也是正確解出的重要因素.5、尺【解析】【分析】根據(jù)題中所給的條件可知,竹竿斜放恰好等于門的對角線長,可與門的寬和高構成直角三角形,運用勾股定理可求出門高,進而解答即可.【詳解】解:設門高為x尺,則竹竿長為(x+1)尺,根據(jù)勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴門高7.5尺,竹竿高=7.5+1=8.5(尺).故答案為尺.【考點】本題考查勾股定理的運用,正確運用勾股定理,將數(shù)學思想運用到實際問題中是解題關鍵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論