版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(
)A.2個 B.3個 C.4個 D.5個2、如圖,點O為矩形ABCD的對稱中心,點E從點A出發(fā)沿AB向點B運動,移動到點B停止,延長EO交CD于點F,則四邊形AECF形狀的變化依次為()A.平行四邊形→正方形→平行四邊形→矩形B.平行四邊形→菱形→平行四邊形→矩形C.平行四邊形→正方形→菱形→矩形D.平行四邊形→菱形→正方形→矩形3、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(
)A.,21 B.,11 C.4,21 D.,694、關(guān)于x的方程x2+4kx+2k2=4的一個解是﹣2,則k值為(
)A.2或4 B.0或4 C.﹣2或0 D.﹣2或25、已知(x2+y2+1)(x2+y2﹣3)=5,則x2+y2的值為()A.0 B.4 C.4或﹣2 D.﹣26、關(guān)于的一元二次方程的兩根應為(
)A. B., C. D.7、用配方法解方程時,原方程應變形為(
)A. B. C. D.二、多選題(3小題,每小題2分,共計6分)1、若關(guān)于的一元二次方程的兩個實數(shù)根分別是,且滿足,則的值不可能為(
)A.或 B. C. D.不存在2、如圖,在正方形中,,點在邊上,且.將沿對折至,點落在正方形內(nèi)部點處,延長交邊于點,連接,.下列結(jié)論正確的是(
)A. B.C. D.3、用配方法解下列方程,配方錯誤的是(
)A.化為 B.化為C.化為 D.化為第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.2、如果關(guān)于的一元二次方程有實數(shù)根,那么的取值范圍是___.3、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號是__________.4、如圖,將正方形OEFG放在平面直角坐標系中,O是坐標原點,點E的坐標為(2,3),則點F的坐標為_____.5、對一批口罩進行抽檢,統(tǒng)計合格口罩的只數(shù),得到合格口罩的頻率如下:抽取只數(shù)(只)50100150500100020001000050000合格頻率0.820.830.820.830.840.840.840.84估計從該批次口罩中任抽一只口罩是合格品的概率為_____.6、已知方程的一根為,則方程的另一根為_______.7、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.8、已知關(guān)于x的方程ax2+bx+1=0的兩根為x1=1,x2=2,則方程a(x+1)2+b(x+1)+1=0的兩根之和為__________.9、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內(nèi)角是________.10、如圖,在四邊形ABCD中,AC=BD=8,E、F、G、H分別是邊AB、BC、CD、DA的中點,則EG2+FH2的值為_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,在?ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF(1)求證:?ABCD是菱形;(2)若AB=5,AC=6,求?ABCD的面積.2、如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,連接PE,PB.(1)在AC上找一點P,使△BPE的周長最?。ㄗ鲌D說明);(2)求出△BPE周長的最小值.3、已知x1,x2是關(guān)于x的一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根.(1)若這個方程有一個根為-1,求m的值;(2)若這個方程的一個根大于-1,另一個根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.4、定義:有一組對邊相等且這一組對邊所在直線互相垂直的凸四邊形叫做“等垂四邊形”.(1)如圖①,四邊形ABCD與四邊形AEFG都是正方形,135°<∠AEB<180°,求證:四邊形BEGD是“等垂四邊形”;(2)如圖②,四邊形ABCD是“等垂四邊形”,AD≠BC,連接BD,點E,F(xiàn),G分別是AD,BD,BC的中點,連接EG,F(xiàn)G,EF.試判定△EFG的形狀,并證明你的結(jié)論;(3)如圖③,四邊形ABCD是“等垂四邊形”,AD=4,BC=8,請直接寫出邊AB長的最小值.
5、如圖,是的中線,,且,連接,.(1)求證:;(2)當滿足條件__________時,四邊形是矩形.6、用適當?shù)姆椒ń庀铝蟹匠蹋海?)
(2)-參考答案-一、單選題1、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個數(shù)有5個,故選D.【考點】本題考查了平行四邊形的判定,菱形的判定與性質(zhì).解題的關(guān)鍵在于證明四邊形ABCD是菱形.2、B【解析】【分析】根據(jù)對稱中心的定義,根據(jù)矩形的性質(zhì),可得四邊形AECF形狀的變化情況.【詳解】解:觀察圖形可知,四邊形AECF形狀的變化依次為平行四邊形→菱形→平行四邊形→矩形.故選:B.【考點】考查了中心對稱,矩形的性質(zhì),平行四邊形的判定與性質(zhì),菱形的性質(zhì),根據(jù)EF與AC的位置關(guān)系即可求解.3、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關(guān)鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.4、B【解析】【分析】把x=-2代入方程即可求得k的值;【詳解】解:將x=-2代入原方程得到:,解關(guān)于k的一元二次方程得:k=0或4,故選:B.【考點】此題主要考查了解一元二次方程相關(guān)知識點,代入解求值是關(guān)鍵.5、B【解析】【分析】設x2+y2=z,則原方程換元為z2﹣2z﹣8=0,可得z1=4,z2=﹣2,由此即可求解.【詳解】解:設x2+y2=z,則原方程換元為(z+1)(z﹣3)=5,整理得:z2﹣2z﹣8=0,∴(z﹣4)(z+2)=0,解得:z1=4,z2=﹣2,即x2+y2=4或x2+y2=﹣2,∵x2+y2≥0,∴x2+y2=﹣2不合題意,舍去,∴x2+y2=4.故選:B.【考點】本題考查了換元法解一元二次方程,正確掌握換元法是解決本題的關(guān)鍵,注意代數(shù)式x2+y2本身的取值范圍不能忘.6、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關(guān)鍵是根據(jù)公式法解一元二次方程.7、D【解析】【分析】移項,配方,變形后即可得出選項.【詳解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故選:D.【考點】本題考查了解一元二次方程,能夠正確配方是解此題的關(guān)鍵.二、多選題1、ABD【解析】【分析】利用可得,從而得到,解出k結(jié)合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數(shù)根分別是,,∴,∵,∴,即,解得:,當時,,∴此時方程無實數(shù)根,不合題意,舍去,當時,,∴此時方程有兩個不相等實數(shù)根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,熟練掌握若一元二次方程的兩個實數(shù)根分別是,,則是解題的關(guān)鍵.2、ABC【解析】【分析】根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根據(jù)等角的余角相等即可證得∠BAG=∠FCE,根據(jù)GF=3,EF=2可得GF=GE,進而S△FGC=S△GCE=,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折疊得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A選項正確;∴BG=FG,∠AGB=∠AGF,設BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B選項正確;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C選項正確;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D選項錯誤,故選:ABC.【考點】本題考查了翻折變換,正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,勾股定理等知識點的運用,依據(jù)翻折的性質(zhì)找出其中對應相等的線段和對應相等的角是解題的關(guān)鍵.3、BD【解析】【分析】根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1,(3)等式兩邊同時加上一次項系數(shù)一半的平方即可得到結(jié)論.【詳解】A.化為,正確,不符合題意;B.化為,錯誤,符合題意;C.化為,正確,不符合題意;D.化為,錯誤,符合題意.故選:BD.【考點】此題考查了配方法解一元二次方程,屬于基礎題,熟練掌握配方法的一般步驟是解題關(guān)鍵.三、填空題1、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進行求解,對于相關(guān)性質(zhì)定理的熟練運用是解題的關(guān)鍵.2、【解析】【分析】由一元二次方程根與系數(shù)的關(guān)鍵可得:從而列不等式可得答案.【詳解】解:關(guān)于的一元二次方程有實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關(guān)鍵.3、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.4、(﹣1,5)【解析】【詳解】【分析】結(jié)合全等三角形的性質(zhì)可以求得點G的坐標,再由正方形的中心對稱的性質(zhì)求得點F的坐標.【詳解】如圖,過點E作x軸的垂線EH,垂足為H.過點G作x軸的垂線GM,垂足為M,連接GE、FO交于點O′,∵四邊形OEFG是正方形,∴OG=EO,∠GOM+∠EOH=90°∠GOM=∠OEH,∠OGM=∠EOH,在△OGM與△EOH中,,∴△OGM≌△EOH(ASA),∴GM=OH=2,OM=EH=3,∴G(﹣3,2),∴O′(﹣,),∵點F與點O關(guān)于點O′對稱,∴點F的坐標為(﹣1,5),故答案是:(﹣1,5).【考點】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、中點坐標公式等,正確添加輔助線以及熟練掌握和運用相關(guān)內(nèi)容是解題的關(guān)鍵.5、0.84【解析】【分析】觀察表格合格的頻率趨近于0.84,從而由此得到口罩合格的概率即可.【詳解】解:∵隨著抽樣的增大,合格的頻率趨近于0.84,∴估計從該批次口罩中任抽一只口罩是合格品的概率為0.84.故答案為:0.84.【考點】本題考查了用頻率估計概率,解題關(guān)鍵是熟練運用頻率估計概率解決問題.6、【解析】【分析】設方程的另一個根為c,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設方程的另一個根為c,∵,∴.故答案為.【考點】本題考查的是根與系數(shù)的關(guān)系,熟記一元二次方程根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.7、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點】本題考查菱形的對角線問題,掌握菱形的性質(zhì),利用對角線之間的關(guān)系,和勾股定理構(gòu)造方程是解題關(guān)鍵.8、1【解析】【分析】利用整體的思想以及根與系數(shù)的關(guān)系即可求出答案.【詳解】解:設x+1=t,方程a(x+1)2+b(x+1)+1=0的兩根分別是x3,x4,∴at2+bt+1=0,由題意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3.故答案為1.【考點】本題考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練運用根與系數(shù)的關(guān)系,本題屬于基礎題型.9、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),證明得到,再利用外角性質(zhì)求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內(nèi)角是.故答案為:.【考點】本題考查了直角三角形的性質(zhì)和外角的性質(zhì),比較基礎.10、64【解析】【分析】連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質(zhì)、勾股定理計算即可.【詳解】解:連接HE、EF、FG、GH,∵E、F分別是邊AB、BC的中點,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四邊形HEFG為平行四邊形,∵AC=BD,∴EH=EF,∴平行四邊形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案為64.【考點】本題考查的是中點四邊形,掌握三角形中位線定理、菱形的判定和性質(zhì)定理是解題的關(guān)鍵.四、解答題1、(1)證明見解析;(2)S平行四邊形ABCD=24【解析】【分析】(1)利用全等三角形的性質(zhì)證明AB=AD即可解決問題;(2)連接BD交AC于O,利用勾股定理求出對角線的長即可解決問題.【詳解】(1)∵四邊形ABCD是平行四邊形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD,∴AB=AD,∴四邊形ABCD是菱形;(2)連接BD交AC于O,∵四邊形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四邊形ABCD=×AC×BD=24.【考點】本題考查了菱形的判定和性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)等知識,熟練掌握相關(guān)的性質(zhì)與定理、正確添加輔助線是解題的關(guān)鍵.2、(1)見解析(2)12【解析】【分析】(1)連接DE,交AC于點P′,連接BP′,當點P在點P′處時,△BPE的周長最?。碛桑鹤C明△ABP′≌△ADP′,即可求解;(2)根據(jù)(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.從而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如圖,連接DE,交AC于點P′,連接BP′,當點P在點P′處時,△BPE的周長最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∵AP′=AP′,∴△ABP′≌△ADP′,∴BP′=DP′,∴BP+PE=DP′+P′E≥DE,即當點P位于PP′時,△BPE的周長PB+EP+BE最??;(2)解:由(1)得:BP′=DP′,∴P′B+P′E=DE.∵BE=2,AE=3BE,∴AE=6.∴AD=AB=8.∴DE==10.∴PB+PE的最小值是10.∴△BPE周長的最小值為10+BE=10+2=12.【考點】本題主要考查了正方形的性質(zhì),勾股定理,最短距離,全等三角形的判定和性質(zhì)等,熟練掌握相關(guān)知識點是解題的關(guān)鍵.3、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長為7或2m+3,根據(jù)勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根,這個方程有一個根為-1,∴將x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值為1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴解得-2<m<1.∴m的取值范圍是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的兩根分別為2m+3,2m-3.若Rt△ABC的斜邊長為7,則有49=(2m+3)2+(2m-3)2.解得m=±.∵邊長必須是正數(shù),∴m=.4、(1)證明見解析;(2)△EFG是等腰直角三角形;證明見解析;(3)AB最小值為.【解析】【分析】延長BE,DG交于點H,先證△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.結(jié)合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.從而得證;(2)延長BA,CD交于點H,由四邊形ABCD是“等垂四邊形”,AD≠BC知AB⊥CD,AB=CD,從而得∠HBC+∠HCB=90°,根據(jù)三個中點知EF=AB,GF=CD,EF∥AB,GF∥DC,據(jù)此得∠BGF=∠C,EFD=∠HBD,EF=GF.由∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F(xiàn).連接HE,EF,HF,由EF≥HF?HE=BC?AD=4?2=2然后結(jié)合(2)可知AB=EF≥2可得答案.【詳解】解:(1)如圖①,延長BE,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學農(nóng)業(yè)生態(tài)與環(huán)境保護(環(huán)保技術(shù)應用)試題及答案
- 2025年7月國開電大專科《管理學基礎》期末紙質(zhì)考試試題及答案
- 痘痘培訓教學課件
- 高級詞匯話術(shù)
- 2026四川涼山州公安局招聘30人備考題庫及答案詳解(考點梳理)
- 廣西玉林市八校2025-2026學年高二上學期12月聯(lián)合調(diào)研測試語文試卷(含答案)
- 2026北京順義航旅縱橫校招備考題庫及完整答案詳解1套
- 2025河南洛陽市汝陽縣審計局輔助性崗位招聘勞務派遣人員4人備考題庫有完整答案詳解
- 2026四川宜賓銘星中醫(yī)醫(yī)院人才招募中醫(yī)醫(yī)生、外科醫(yī)生、編碼員備考題庫及答案詳解參考
- 2026東風越野車有限公司招聘14人備考題庫(湖北)有答案詳解
- 安全防范系統(tǒng)安裝維護員題庫
- mbd技術(shù)體系在航空制造中的應用
- 苗木育苗方式
- 通信原理-脈沖編碼調(diào)制(PCM)
- 進階切分技法advanced funk studies rick latham-藍色加粗字
- 省直單位公費醫(yī)療管理辦法實施細則
- 附錄 阿特拉斯空壓機操作手冊
- JJG 693-2011可燃氣體檢測報警器
- GB/T 39557-2020家用電冰箱換熱器
- BB/T 0019-2000包裝容器方罐與扁圓罐
- 凝氣式汽輪機和離心式壓縮機
評論
0/150
提交評論