解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》重點(diǎn)解析試卷_第1頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》重點(diǎn)解析試卷_第2頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》重點(diǎn)解析試卷_第3頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》重點(diǎn)解析試卷_第4頁
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》重點(diǎn)解析試卷_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在和中,,,,則(

)A.30° B.40° C.50° D.60°2、如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn),重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ.以下結(jié)論錯(cuò)誤的是(

)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP3、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關(guān)系(

)A. B. C. D.4、如圖,已知,,,則的長為(

)A.7 B.3.5 C.3 D.25、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在△ABC中,AD⊥BC于點(diǎn)D,過A作AEBC,且AE=AB,AB上有一點(diǎn)F,連接EF.若EF=AC,CD=4BD,則=_____.2、如圖,在和中,,,直線交于點(diǎn)M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號(hào)).3、如圖,給出下列結(jié)論:①;②;③;④.其中正確的有_______(填寫答案序號(hào)).4、如圖,在△ABC中,,AC=8cm,BC=10cm.點(diǎn)C在直線l上,動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿A→C的路徑向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)A運(yùn)動(dòng).點(diǎn)P和點(diǎn)Q分別以每秒1cm和2cm的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也停止運(yùn)動(dòng),分別過點(diǎn)P和Q作PM⊥直線l于M,QN⊥直線l于N.則點(diǎn)P運(yùn)動(dòng)時(shí)間為____秒時(shí),△PMC與△QNC全等.5、如圖,在x、y軸上分別截取OA、OB,使OA=OB,再分別以點(diǎn)A、B為圓心,以大于AB的長度為半徑畫弧,兩弧交于點(diǎn)C.若C的坐標(biāo)為(3a,﹣a+8),則a=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、(1)閱讀理解:問題:如圖1,在四邊形中,對(duì)角線平分,.求證:.思考:“角平分線+對(duì)角互補(bǔ)”可以通過“截長、補(bǔ)短”等構(gòu)造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問題.結(jié)合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當(dāng)時(shí),探究線段,,之間的數(shù)量關(guān)系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點(diǎn)D作,垂足為點(diǎn)E,請(qǐng)直接寫出線段、、之間的數(shù)量關(guān)系.2、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點(diǎn)D在直線BC上.(1)如圖1,當(dāng)點(diǎn)D在CB延長線上時(shí),求證:BE⊥CD;(2)如圖2,當(dāng)D點(diǎn)不在直線BC上時(shí),BE、CD相交于M,①直接寫出∠CME的度數(shù);②求證:MA平分∠CME3、小明的學(xué)習(xí)過程中,對(duì)教材中的一個(gè)有趣問題做如下探究:(1)【習(xí)題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點(diǎn).求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點(diǎn),其反向延長線與邊的延長線交于點(diǎn),若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點(diǎn),使得,角平分線交于點(diǎn).的外角的平分線所在直線與的延長線交于點(diǎn).若,求的度數(shù).4、如圖,點(diǎn)B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數(shù);(3)求AC的長.5、如圖,已知:正方形,點(diǎn),分別是,上的點(diǎn),連接,,,且,求證:.-參考答案-一、單選題1、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計(jì)算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點(diǎn)】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.2、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯(cuò)誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯(cuò)誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點(diǎn)】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.3、C【解析】【分析】根據(jù)△△,證得,=,再利用∥BC得到=,再根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點(diǎn)】此題考查旋轉(zhuǎn)圖形的性質(zhì),等腰三角形的性質(zhì),兩直線平行內(nèi)錯(cuò)角相等,三角形的內(nèi)角和定理.4、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對(duì)應(yīng)邊相等是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)平行線性質(zhì)得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點(diǎn)】本題考查了平行線性質(zhì)、全等三角形的判定與性質(zhì)的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)定理是解題的關(guān)鍵.二、填空題1、【解析】【分析】在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點(diǎn)H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點(diǎn)H,∵AD⊥BC于點(diǎn)D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點(diǎn)】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識(shí)與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.2、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對(duì)應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯(cuò)誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對(duì)應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯(cuò)誤;正確的個(gè)數(shù)有3個(gè);故答案為:①②③.【考點(diǎn)】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識(shí),證明三角形全等是解題的關(guān)鍵.3、①③④【解析】【分析】利用AAS可證明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差關(guān)系可得∠EAM=∠FAN,可得③正確,利用ASA可證明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正確;根據(jù)線段的和差關(guān)系可得CM=BN,利用AAS可證明△CDM≌△BDN,可得CD=DB,可得②錯(cuò)誤;利用ASA可證明△ACN≌△ABM,可得④正確;綜上即可得答案.【詳解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正確,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正確,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②錯(cuò)誤,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正確,綜上所述:正確的結(jié)論有①③④,故答案為:①③④【考點(diǎn)】本題考查全等三角形的判定與性質(zhì),判定兩個(gè)三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形確定,當(dāng)利用SAS證明時(shí),角必須是兩邊的夾角;熟練掌握全等三角形的判定定理是解題關(guān)鍵.4、2或6或6或2【解析】【分析】設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,根據(jù)題意化成兩種情況,由全等三角形的性質(zhì)得出,列出關(guān)于t的方程,求解即可.【詳解】解:設(shè)運(yùn)動(dòng)時(shí)間為t秒時(shí),△PMC≌△CNQ,∴斜邊,分兩種情況:①如圖1,點(diǎn)P在AC上,點(diǎn)Q在BC上,圖1∵,,∴,,∵,∴,∴;②如圖2,點(diǎn)P、Q都在AC上,此時(shí)點(diǎn)P、Q重合,圖2∵,,∴,∴;綜上所述,點(diǎn)P運(yùn)動(dòng)時(shí)間為2或6秒時(shí),△PMC與△QNC全等,故答案為:2或6.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,根據(jù)題意判斷兩三角形全等的條件是解題關(guān)鍵,同時(shí)要注意分情況討論,解題時(shí)避免遺漏答案.5、2【解析】【分析】根據(jù)尺規(guī)作圖可知,點(diǎn)C在∠AOB角平分線上,所以C點(diǎn)的橫坐標(biāo)和縱坐標(biāo)相等,即可以求出a的值.【詳解】解:根據(jù)題目尺規(guī)作圖可知,交點(diǎn)C是∠AOB角平分線上的一點(diǎn),∵點(diǎn)C在第一象限,∴點(diǎn)C的橫坐標(biāo)和縱坐標(biāo)都是正數(shù)且橫坐標(biāo)等于縱坐標(biāo),即3a=-a+8,得a=2,故答案為:2.【考點(diǎn)】本題考查了角平分線尺規(guī)作圖,角平分線的性質(zhì),以及平面直角坐標(biāo)系的知識(shí),結(jié)合直角坐標(biāo)系的知識(shí)列方程求解是解答本題的關(guān)鍵.三、解答題1、(1)證明見解析;(2);理由見解析;(3).【解析】【分析】(1)方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問題;(2)延長到點(diǎn),使,連接,證明,可得,即(3)連接,過點(diǎn)作于,證明,,進(jìn)而根據(jù)即可得出結(jié)論.【詳解】解:(1)方法1:在上截,連接,如圖.平分,.在和中,,,,.,..,.方法2:延長到點(diǎn),使得,連接,如圖.平分,.在和中,,.,.,.,,.(2)、、之間的數(shù)量關(guān)系為:.(或者:,).延長到點(diǎn),使,連接,如圖2所示.由(1)可知,.為等邊三角形.,.,..,為等邊三角形.,.,,即.在和中,,.,,.(3),,之間的數(shù)量關(guān)系為:.(或者:,)解:連接,過點(diǎn)作于,如圖3所示.,..在和中,,,,.在和中,,.,,.【考點(diǎn)】本題考查了三角形全等的性質(zhì)與判定,正確的添加輔助線是解題的關(guān)鍵.2、(1)見解析(2)①90°;②見解析【解析】【分析】(1)先推出∠CAD=∠BAE,∠C=∠ABC=45°,然后證明△CAD≌△BAE得到∠ABE=∠C=45°,則∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)①同理可證△BAE≌△CAD,得到∠ABE=∠ACD,再由∠EMC=∠EBC+∠BCD,得到∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過點(diǎn)A作AG⊥BE于G,AF⊥CD于F,由△BAE≌△CAD,得到AG=AF,證明Rt△AGM≌Rt△AFM得到∠AMG=∠AMF,即AM平分∠EMC.(1)解:∵△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∠DAE+∠DAB=∠CAB+∠DAB,∴∠CAD=∠BAE,∠C=∠ABC=45°,∴△CAD≌△BAE(SAS),∴∠ABE=∠C=45°,∴∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)解:①同理可證△BAE≌△CAD,∠ABC=∠ACB=90°,∴∠ABE=∠ACD,∵∠EMC=∠EBC+∠BCD,∴∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過點(diǎn)A作AG⊥BE于G,AF⊥CD于F,∵△BAE≌△CAD,∴AG=AF,在Rt△AGM和Rt△AFM中,,∴Rt△AGM≌Rt△AFM(HL),∴∠AMG=∠AMF,即AM平分∠EMC.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.3、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外角的性質(zhì)可得結(jié)論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質(zhì)可求∠GAF=65°,由余角的性質(zhì)可求解;(3)由平角的性質(zhì)和角平分線的性質(zhì)可求∠EAN=90°,由外角的性質(zhì)可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF為∠BAG的角平分線,∴∠GAF=∠DAF130°=65°,∵CD為AB邊上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;(3)證明:∵C、A、G三點(diǎn)共線,AE、AN為角平分線,∴∠E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論