解析卷-人教版8年級數(shù)學上冊《全等三角形》必考點解析試題(含答案解析)_第1頁
解析卷-人教版8年級數(shù)學上冊《全等三角形》必考點解析試題(含答案解析)_第2頁
解析卷-人教版8年級數(shù)學上冊《全等三角形》必考點解析試題(含答案解析)_第3頁
解析卷-人教版8年級數(shù)學上冊《全等三角形》必考點解析試題(含答案解析)_第4頁
解析卷-人教版8年級數(shù)學上冊《全等三角形》必考點解析試題(含答案解析)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是()A.≌ B.≌C.≌ D.≌2、如圖,平行四邊形ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠23、某同學把一塊三角形的玻璃打碎成了3塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的方法是(

).A.帶①去 B.帶②去 C.帶③去 D.①②③都帶4、如圖,已知,添加以下條件,不能判定的是(

)A. B.C. D.5、如圖,在△ABC和△DEF中,已知AB=DE,BC=EF,根據(jù)(SAS)判定△ABC≌△DEF,還需的條件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三個均可以第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,小明與小紅玩蹺蹺板游戲,如果蹺蹺板的支點O(即蹺蹺板的中點)至地面的距離是50cm,當小紅從水平位置CD下降30cm時,這時小明離地面的高度是___cm.2、如圖,已知在△ABD和△ABC中,∠DAB=∠CAB,點A、B、E在同一條直線上,若使△ABD≌△ABC,則還需添加的一個條件是______.(只填一個即可)3、如圖,在和中,,,直線交于點M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).4、如圖所示,點在一塊直角三角板上(其中),于點,于點,若,則_________度.5、如圖,已知AC與BF相交于點E,ABCF,點E為BF中點,若CF=8,AD=5,則BD=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知△ABC.求作:BC邊上的高與內(nèi)角∠B的角平分線的交點.2、如圖,在中,D是邊上的點,,垂足分別為E,F(xiàn),且.求證:.3、如圖,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度數(shù).4、如圖,在中,,點在的延長線上,于點,若,求證:.5、已知:RtABC中,∠B=90°,D是BC上一點,DF⊥BC交AC于點H,且DF=BC,F(xiàn)G⊥AC交BC于點E.求證:AB=DE.-參考答案-一、單選題1、B【解析】【分析】觀察圖形,運用SAS可判定△ABO與△ADO全等.【詳解】解:∵AB=AD,∠BAO=∠DAO,AO是公共邊,

∴△ABO≌△ADO(SAS).故選B.【考點】本題考查全等三角形的判定,屬基礎(chǔ)題,比較簡單.2、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因為∠ABD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關(guān)鍵是掌握三角形的判定定理.3、C【解析】【分析】根據(jù)三角形全等的判定定理判斷即可.【詳解】帶③去,理由如下:∵③中滿足ASA的條件,∴帶③去,故選C.【考點】本題考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.4、D【解析】【分析】全等三角形的判定有SAS,ASA,AAS,SSS,根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:在△ABC和△CDA中,,AC=CA;A.添加∠2=∠3,可用ASA判定;B.添加∠B=∠D,可用AAS判定;C.添加BC=DA,可用SAS判定;D.添加AB=DC,是SSA不能判定故選:D【考點】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理的內(nèi)容是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5、B【解析】【分析】根據(jù)三角形全等的判定中的SAS,即兩邊夾角.已知兩條邊相等,只需要它們的夾角相等即可.【詳解】要使兩三角形全等,已知AB=DE,BC=EF,要用SAS判斷,還差夾角,即∠B=∠E.故選:B.【考點】本題考查了三角形全等的判定方法.三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主.二、填空題1、80【解析】【分析】根據(jù)題意可得:OF=OG,OC=OD,利用已知條件判斷出△OFC≌△OGD,得到CF=DG,即可求出答案.【詳解】∵O是FG和CD的中點∴OF=OG,OC=OD在△OFC和△OGD中∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明離地面的高度=支點到地面的高度+CF=50+30=80cm故答案為80【考點】本題主要考查了三角形全等知識的應(yīng)用,用數(shù)學方法解決生活中有關(guān)的實際問題,把實際問題轉(zhuǎn)換成數(shù)學問題,用數(shù)學方法加以論證,最后進行求解,是一種十分重要的方法.2、AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】【分析】利用全等三角形的判定方法添加條件即可求解.【詳解】解:∵∠DAB=∠CAB,AB=AB,∴當添加AD=AC時,可根據(jù)“SAS”判斷△ABD≌△ABC;當添加∠D=∠C時,可根據(jù)“AAS”判斷△ABD≌△ABC;當添加∠ABD=∠ABC時,可根據(jù)“ASA”判斷△ABD≌△ABC.故答案為AD=AC(∠D=∠C或∠ABD=∠ABC等).【考點】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法,選用哪一種方法,取決于題目中的已知條件.3、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.4、15【解析】【分析】根據(jù),,判斷OB是的角平分線,即可求解.【詳解】解:由題意,,,,即點O到BC、AB的距離相等,∴OB是的角平分線,∵,∴.故答案為:15.【考點】本題考查角平分線的定義及判定,熟練掌握“到一個角的兩邊距離相等的點在這個角的平分線上”是解題的關(guān)鍵.5、3【解析】【分析】利用全等三角形的判定定理和性質(zhì)定理可得結(jié)果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點E為BF中點,∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理,熟練掌握定理是解答此題的關(guān)鍵.三、解答題1、詳見解析.【解析】【分析】過點A作BC的垂線,作出∠B的平分線,二者交點即為所求的點.【詳解】如圖:∴P點即為所求【考點】本題考查了尺規(guī)作圖,熟練掌握垂線和角平分線的作圖步驟是解答本題的關(guān)鍵.2、見解析【解析】【分析】由得出,由SAS證明,得出對應(yīng)角相等即可.【詳解】證明:∵,∴.在和中,∴,∴.【考點】本小題考查垂線的性質(zhì)、全等三角形的判定與性質(zhì)、等基礎(chǔ)知識,考查推理能力、空間觀念與幾何直觀.3、35o【解析】【分析】根據(jù)全等三角形對應(yīng)角相等可得∠C=∠D,∠OBC=∠OAD,再根據(jù)三角形的內(nèi)角和等于180°表示出∠OBC,然后利用四邊形的內(nèi)角和等于360°列方程求解即可.【詳解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65o,∴∠OBC=180o?65o?∠C=115o?∠C,在四邊形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360o,∴65o+115o?∠C+135o+115o?∠C=360o,解得∠C=35o.【考點】此題考查了全等三角形的性質(zhì)和四邊形的內(nèi)角和等于360°,熟練掌握這兩個性質(zhì)是解題的關(guān)鍵.4、證明見解析【解析】【分析】利用AAS證明,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】證明:∵,∴∠ADE=90°,∵,∴∠ACB=∠ADE,在和中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論