版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省雷州市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、我圖古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深幾何?(注:丈、尺是長(zhǎng)度單位,1丈=10尺)意思為:如圖,有一個(gè)邊長(zhǎng)為1丈的正方形水池,在水池正中央有一根蘆葦,它高出水面1尺,如果把這根蘆葦拉向水池一邊的岸邊,它的頂端恰好碰到池邊的水面.則這根蘆葦?shù)拈L(zhǎng)度是(
)A.5尺 B.10尺 C.12尺 D.13尺2、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個(gè)小正方形的邊長(zhǎng)均為1),點(diǎn)A,B,C恰好在網(wǎng)格圖中的格點(diǎn)上,那么△ABC中BC邊上的高是(
)A. B. C. D.3、已知點(diǎn)是平分線上的一點(diǎn),且,作于點(diǎn),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),若,則的最小值為(
)A.2 B.3 C.4 D.54、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,5、一個(gè)直角三角形的兩條直角邊邊長(zhǎng)分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.56、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個(gè)正方形的面積和為(
)A.5 B.9 C.16 D.257、在△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、已知,在中,,,,則的面積為__.2、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長(zhǎng)各幾何?”題意是:有一個(gè)池塘,其底面是邊長(zhǎng)為10尺的正方形,一棵蘆葦AB生長(zhǎng)在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長(zhǎng)_____尺.3、公元三世紀(jì),我國(guó)漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”,它由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.4、若△ABC中,cm,cm,高cm,則BC的長(zhǎng)為________cm.5、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米6、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.7、如圖,在長(zhǎng)方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B恰好落在線段DE上的點(diǎn)F處,則BE的長(zhǎng)為______.8、在△ABC中,∠C=90°,AB=10,AC=8,則BC的長(zhǎng)為_____.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,小明家在一條東西走向的公路北側(cè)米的點(diǎn)處,小紅家位于小明家北米(米)、東米(米)點(diǎn)處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點(diǎn)處建一個(gè)快遞驛站,使最小,請(qǐng)確定點(diǎn)的位置,并求的最小值.2、如圖,有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面,則水池里水的深度是多少尺?請(qǐng)你用所學(xué)知識(shí)解答這個(gè)問題.3、在尋找某墜毀飛機(jī)的過程中,兩艘搜救艇接到消息,在海面上有疑似漂浮目標(biāo)A、B.于是,一艘搜救艇以16海里/時(shí)的速度離開港口O(如圖)沿北偏東40°的方向向目標(biāo)A前進(jìn),同時(shí),另一艘搜救艇也從港口O出發(fā),以12海里/時(shí)的速度向著目標(biāo)B出發(fā),1.5小時(shí)后,他們同時(shí)分別到達(dá)目標(biāo)A、B.此時(shí),他們相距30海里,請(qǐng)問第二艘搜救艇的航行方向是北偏西多少度?4、(1)如圖1是一個(gè)重要公式的幾何解釋,請(qǐng)你寫出這個(gè)公式;(2)伽菲爾德(1881年任美國(guó)第20屆總統(tǒng))利用(1)中的公式和圖2證明了勾股定理(1876年4月1日發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試證明過程.說明:.5、點(diǎn)P到y(tǒng)軸的距離與它到點(diǎn)A(-8,2)的距離都等于13,求點(diǎn)P的坐標(biāo)。6、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.7、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.-參考答案-一、單選題1、D【解析】【分析】依題意,蘆葦?shù)拈L(zhǎng)度為直角三角形的斜邊,水深為一直角邊,另一直角邊為5尺,由勾股定理即可列出方程,進(jìn)而得到答案.【詳解】解:設(shè)水深x尺,則蘆葦?shù)拈L(zhǎng)度為(x+1)尺,依題意,由勾股定理,得:,解得,所以蘆葦?shù)拈L(zhǎng)度為13尺.故選D.【考點(diǎn)】本題考查勾股定理的應(yīng)用,將題目描述問題轉(zhuǎn)化成直角三角形求邊長(zhǎng)的問題是解題的關(guān)鍵.2、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設(shè)BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設(shè)BC邊上的高為h,則,∴.故選A.點(diǎn)睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長(zhǎng),并用勾股定理的逆定理來判斷三角形是否是直角三角形是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時(shí),PN最短,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當(dāng)PN⊥OA時(shí),PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.4、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時(shí)還需驗(yàn)證兩小邊的平方和是否等于最長(zhǎng)邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項(xiàng)符合題意;B、42+52≠62,不是勾股數(shù),故此選項(xiàng)不合題意;C、22+32≠42,不是勾股數(shù),故此選項(xiàng)不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項(xiàng)不合題意;故選:A.【考點(diǎn)】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).5、C【解析】【分析】根據(jù)勾股定理求出斜邊的長(zhǎng),再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長(zhǎng)為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點(diǎn)】本題考查了勾股定理,利用勾股定理求直角三角形的邊長(zhǎng)和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.6、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個(gè)正方形的面積和為25故選:D【考點(diǎn)】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項(xiàng)正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項(xiàng)不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項(xiàng)正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項(xiàng)正確;故選:B.【考點(diǎn)】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.二、填空題1、2或14#14或2【解析】【分析】過點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長(zhǎng),即可求解.【詳解】解:過點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.2、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(zhǎng)(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L(zhǎng)和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(zhǎng)(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長(zhǎng)13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.3、169.【解析】【分析】由題意知小正方形的邊長(zhǎng)為7.設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,運(yùn)用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長(zhǎng)為7,設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,則tanθ=短邊:長(zhǎng)邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點(diǎn)】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關(guān)鍵.4、28或8##8或28【解析】【分析】高的位置不確定,應(yīng)分情況進(jìn)行討論:(1)高在內(nèi)部;(2)高在外部,依此即可求解.【詳解】解:如圖(1)cm,cm,,則,,則;如圖(2),由(1)得,,則.則的長(zhǎng)為或.故答案為或.【考點(diǎn)】此題考查了勾股定理,本題需注意高的位置不確定,應(yīng)根據(jù)三角形的形狀分兩種情況討論.5、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.6、29【解析】【分析】如圖(見解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解題關(guān)鍵.7、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長(zhǎng)為.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.8、6【解析】【分析】根據(jù)勾股定理求解即可.【詳解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案為:6.【考點(diǎn)】本題考查勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解答此題的關(guān)鍵.三、解答題1、(1)米;(2)見解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結(jié)論;(2)如圖,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn)A',連接A'B交MN于點(diǎn)P.驛站到小明家和到小紅家距離和的最小值即為A'B,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:(1)如圖,連接AB,由題意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如圖,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn)A',連接A'B交MN于點(diǎn)P.驛站到小明家和到小紅家距離和的最小值即為A'B,由題意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即從驛站到小明家和到小紅家距離和的最小值為1500米.【考點(diǎn)】本題考查軸對(duì)稱-最短問題,勾股定理,題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱解決最短問題.2、水池里水的深度是15尺【解析】【分析】根據(jù)勾股定理列出方程,解方程即可.【詳解】解:設(shè)水池里水的深度是x尺,由題意得,,解得:x=l5,答:水池里水的深度是15尺.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,掌握勾股定理、根據(jù)勾股定理正確列出方程是解題的關(guān)鍵.3、第二艘搜救艇的航行方向是北偏西50度.【解析】【分析】根據(jù)題意求出OA、OB,根據(jù)勾股定理的逆定理求出∠AOB=90°,即可得出答案.【詳解】解:根據(jù)題意得:OA=16海里/時(shí)×1.5小時(shí)=24海里;OB=12海里/時(shí)×1.5小時(shí)=18海里,∵OB2+OA2=242+182=900,AB2=302=900,∴OB2+OA2=AB2,∴∠AOB=90°,∵艘搜救艇以16海里/時(shí)的速度離開港口O(如圖)沿北偏東40°的方向向目標(biāo)A的前進(jìn),∴∠BOD=50°,即第二艘搜救艇的航行方向是北偏西50度.【考點(diǎn)】本題考查了方向角,勾股定理的逆定理的應(yīng)用,能熟記定理的內(nèi)容是解此題的關(guān)鍵,注意:如果三角形兩邊a、b的平方和等于第三邊c的平方,那么這個(gè)三角形是直角三角形.4、(1);(2)證明見解析.【解析】【分析】(1)根據(jù)正方形面積計(jì)算公式解答;(2)利用面積法證明即可得到結(jié)論.【詳解】(1);(2)如圖,∵Rt△DEC≌Rt△EAB,∴∠DEC=∠EAB,DE=AE,∵,∴,∴△AED為等腰直角三角形,∵,∴,即,∵,∴,∴.【考點(diǎn)】此題考查勾股定理的證明,完全平方公式在幾何圖形中的應(yīng)用,正確理解各部分圖形之間的關(guān)系,正確分析它們之間的面積等量關(guān)系是解題的關(guān)鍵.5、或.【解析】【分析】由P到y(tǒng)軸的距離為13,可得P點(diǎn)橫坐標(biāo)為13或-13,設(shè)出P點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式建立方程求解即可.【詳解】解:∵點(diǎn)P到y(tǒng)軸的距離為13,∴P點(diǎn)橫坐標(biāo)為13或-13當(dāng)P點(diǎn)橫坐標(biāo)為13時(shí),設(shè)P(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷年護(hù)士資格考試試題及答案
- 2021年健康管理師考試真題及答案
- 護(hù)理文書考試題及答案
- 遴選考試加試真題及答案
- 銷售團(tuán)隊(duì)激勵(lì)分配方案數(shù)據(jù)分析輔助工具
- 2026年浙江旅游職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫附答案解析
- 團(tuán)隊(duì)建設(shè)活動(dòng)策劃執(zhí)行清單團(tuán)隊(duì)凝聚力提升工具
- 云埔工業(yè)區(qū)寧埔大道施工組織設(shè)計(jì)方案(最終版)
- 北京教師考試試題及答案
- 六盤水2025年貴州六盤水市水城區(qū)事業(yè)單位招聘403人筆試歷年參考題庫附帶答案詳解
- 高考英語讀后續(xù)寫技巧總結(jié)
- 2025年下半年河南鄭州市住房保障和房地產(chǎn)管理局招聘22名派遣制工作人員重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 維修事故協(xié)議書
- 2025ESC+EAS血脂管理指南要點(diǎn)解讀課件
- 2025至2030外周靜脈血栓切除裝置行業(yè)調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 矛盾糾紛排查化解課件
- 2026年人力資源共享服務(wù)中心建設(shè)方案
- JJG(交通) 141-2017 瀝青路面無核密度儀
- 石材加工成本與報(bào)價(jià)分析報(bào)告
- 幾何形體結(jié)構(gòu)素描教案
- 安全員(化工安全員)國(guó)家職業(yè)標(biāo)準(zhǔn)(2025年版)
評(píng)論
0/150
提交評(píng)論