版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學(xué)上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在正方形ABCD中,點O是對角線AC的中點,點E是邊BC上的一個動點,OE⊥OF,交邊AB于點F,點G,H分別是點E,F(xiàn)關(guān)于直線AC的對稱點,點E從點C運動到點B時,圖中陰影部分面積的大小變化是()A.先增大后減小 B.先減小后增大C.一直不變 D.不確定2、下列方程:①;②;③;④;⑤.是一元二次方程的是(
)A.①② B.①②④⑤ C.①③④ D.①④⑤3、如圖,直線與雙曲線交于兩點,則當線段的長度取最小值時,的值為(
)A. B. C. D.4、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似5、如圖,為△的中位線,點在上,且;若,則的長為(
)A.2 B.1 C.4 D.36、如圖,點D、E分別在△ABC的邊BA、CA的延長線上,且DE∥BC,已知AE=3,AC=6,AD=2,則BD的長為()A.4 B.6 C.7 D.8二、多選題(6小題,每小題2分,共計12分)1、下列四個命題中正確的命題有(
)A.兩個矩形一定相似 B.兩個菱形都有一個角是40°,那么這兩個菱形相似C.兩個正方形一定相似 D.有一個角相等的兩個等腰梯形相似2、如圖,若,則不能得到的是(
)A. B. C. D.3、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA4、下列方程中,有實數(shù)根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=05、如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論,其中正確的結(jié)論是()A.AC=FG B.S△FAB:S四邊形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ?AC6、不能說明△ABC∽△A’B’C’的條件是(
)A.或 B.且C.且 D.且第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,點D,E分別在△ABC的邊AC,AB上,△ADE∽△ABC,M,N分別是DE,BC的中點,若=,則=__.2、已知關(guān)于的方程的一個根是,則____.3、在20世紀70年代,我國著名數(shù)學(xué)家華羅庚教授將黃金分割法作為一種“優(yōu)選法”,在全國大規(guī)模推廣,取得了很大成果.如圖,利用黃金分割法,所做將矩形窗框分為上下兩部分,其中E為邊的黃金分割點,即.已知為2米,則線段的長為______米.4、一個正方形的面積為,則它的對角線長為________.5、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.6、你知道嗎,對于一元二次方程,我國古代數(shù)學(xué)家還研究過其幾何解法呢!以方程即為例加以說明.數(shù)學(xué)家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構(gòu)造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.那么在下面右邊三個構(gòu)圖(矩形的頂點均落在邊長為1的小正方形網(wǎng)格格點上)中,能夠說明方程的正確構(gòu)圖是_____.(只填序號)7、將方程(3x-1)(2x+4)=2化為一般形式為____________,其中二次項系數(shù)為________,一次項系數(shù)為________.8、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應(yīng)點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關(guān)于某條直線對稱,則的值為______.四、解答題(6小題,每小題10分,共計60分)1、某種病毒傳播非???,如果1人被感染,經(jīng)過2輪感染后就會有81人被感染.(1)每輪感染中平均1人會感染幾人?(2)若病毒得不到有效控制,3輪感染后,被感染的人會不會超過700人?2、如圖,BF平行于正方形ADCD的對角線AC,點E在BF上,且AE=AC,CF∥AE,求∠BCF.3、水果批發(fā)市場有一種高檔水果,如果每千克盈利(毛利)10元,每天可售出600kg.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20kg.(1)若以每千克能盈利17元的單價出售,求每天的總毛利潤為多少元;(2)現(xiàn)市場要保證每天總毛利潤為7500元,同時又要使顧客得到實惠,求每千克應(yīng)漲價多少元;(3)現(xiàn)需按毛利潤的10%繳納各種稅費,人工費每日按銷售量每千克支出1.5元,水電房租費每日300元.若每天剩下的總純利潤要達到6000元,求每千克應(yīng)漲價多少元.4、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.5、如圖,在平面直角坐標系中,O為坐標原點,點A坐標為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點M,平面內(nèi)是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.6、某水果店標價為10元/kg的某種水果經(jīng)過兩次降價后價格為8.1元/kg,并且兩次降價的百分率相同.時間/天x銷量/kg120-x儲藏和損耗費用/元3x2-64x+400(1)求該水果每次降價的百分率;(2)從第二次降價的第1天算起,第x天(x為整數(shù))的銷量及儲藏和損耗費用的相關(guān)信息如下表所示,已知該水果的進價為4.1元/kg,設(shè)銷售該水果第x天(1≤x<10)的利潤為377元,求x的值.-參考答案-一、單選題1、C【解析】【分析】連接BD,證明△FOB≌△EOC,同理得到△HOD≌△GOC,即可得到答案.【詳解】解:連接BD,∵四邊形ABCD是正方形,∴∠BOC=90°,,∴∠BOЕ+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴圖中陰影部分的面積=△ABD的面積=正方形ABCD的面積.∴陰影部分面積的大小一直不變.故選:C.【考點】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的性質(zhì)、全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)一元二次方程的定義進行判斷.【詳解】①該方程符合一元二次方程的定義;②該方程中含有2個未知數(shù),不是一元二次方程;③該方程含有分式,它不是一元二次方程;④該方程符合一元二次方程的定義;⑤該方程符合一元二次方程的定義.綜上,①④⑤一元二次方程.故選:D.【考點】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2.3、C【解析】【分析】當直線經(jīng)過原點時,線段AB的長度取最小值,依此可得關(guān)于的方程,解方程即可求得的值.【詳解】∵根據(jù)反比例函數(shù)的對稱性可知,要使線段AB的長度取最小值,則直線經(jīng)過原點,∴,解得:.故選:C.【考點】考查了反比例函數(shù)與一次函數(shù)的交點問題,本題的關(guān)鍵是理解當直線經(jīng)過原點時,線段AB的長度取最小值.4、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關(guān)鍵.5、A【解析】【分析】根據(jù)三角形中位線定理求出DE,根據(jù)直角三角形的性質(zhì)求出DF,計算即可.【詳解】∵DE為△ABC的中位線,∴DE=BC=5,∵∠AFB=90°,D是AB的中點,∴DF=AB=3,∴EF=DE-DF=2,故選A.【考點】本題考查的是三角形中位線定理、直角三角形的性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.6、B【解析】【分析】只需要證明△AED∽△ACB即可求解.【詳解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴∴∴BD=AD+AB=2+4=6.故選B.【考點】本題主要考查了平行線的性質(zhì),相似三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.二、多選題1、BC【解析】【分析】根據(jù)兩個圖形相似的性質(zhì)及判定方法,對應(yīng)邊的比相等,對應(yīng)角相等,兩個條件同時滿足來判斷正誤.【詳解】解:A兩個矩形對應(yīng)角都是直角相等,對應(yīng)邊不一定成比例,所以不一定相似,故本小題錯誤;B兩個菱形有一個角相等,則其它對應(yīng)角也相等,對應(yīng)邊成比例,所以一定相似,故本小題正確;C兩個正方形一定相似,正確;D有一個角相等的兩個等腰梯形,對應(yīng)角一定相等,但對應(yīng)邊的比不一定相等,故本小題錯誤.故選:BC.【考點】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質(zhì)及其定義.2、ABC【解析】【分析】根據(jù)平行線分線段成比例定理及其推論列出比例式,對比選項解答即可.【詳解】解:∵,∴,故選項A錯誤,符合題意;,故選項B錯誤,符合題意;,故選項C錯誤,符合題意;,故選項D正確,不符合題意,故選:ABC.【考點】本題考查平行線分線段成比例定理及其推論,熟練掌握平行線分線段成比例定理及其推論,明確線段之間的對應(yīng)關(guān)系是解答的關(guān)鍵.3、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.4、ABC【解析】【分析】根據(jù)直接開方法可確定A選項正確;根據(jù)因式分解法可確定B選項正確;根據(jù)方程的判別式,當時,方程有兩個不等的實數(shù)根,當時,方程有兩個相等的實數(shù)根,當時,方程無實數(shù)根,可判斷C選項正確,D選項錯誤.【詳解】A.,解得:,,方程有實數(shù)根,A選項正確;B.,解得:,,方程有實數(shù)根,B選項正確;C.,,,,方程有實數(shù)根,C選項正確;D.,,,,方程無實數(shù)根,D選項錯誤.故選:ABC.【考點】本題考查了一元二次方程根的判斷,熟練掌握根的判別式是解題的關(guān)鍵.5、ABCD【解析】【分析】根據(jù)正方形的性質(zhì)及垂直的定義證明△CAD≌△GFA,即可判斷A選項;證明四邊形CBFG是矩形,由此判斷B選項;根據(jù)矩形的性質(zhì)及等腰直角三角形的性質(zhì)即可判斷C選項;證明△CAD∽△EFQ,即可判斷D選項.【詳解】解:∵四邊形ADEF為正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A選項正確;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四邊形CBFG是平行四邊形,∵,∴四邊形CBFG是矩形,∴S△FAB:S四邊形CBFG=1:2,故B選項正確;∵四邊形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C選項正確;∵四邊形ADEF為正方形,∴,AD=EF,∴,∵四邊形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ?AC,故D選項正確;故選:ABCD.【考點】此題考查矩形的判定及性質(zhì),等腰直角三角形的性質(zhì),正方形的性質(zhì),全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),熟記各知識點并熟練應(yīng)用解決問題是解題的關(guān)鍵.6、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關(guān)鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應(yīng)成比例且夾角相等的兩個三角形相似;三邊對應(yīng)成比例的兩個三角形相似;兩角對應(yīng)相等的兩個三角形相似.三、填空題1、【解析】【分析】根據(jù)相似三角形對應(yīng)中線的比等于相似比求出,根據(jù)相似三角形面積的比等于相似比的平方解答即可.【詳解】解:∵M,N分別是DE,BC的中點,∴AM、AN分別為△ADE、△ABC的中線,∵△ADE∽△ABC,∴==,∴=()2=,故答案為:.【考點】本題考查了相似三角形的性質(zhì),掌握相似三角形面積的比等于相似比的平方、相似三角形對應(yīng)中線的比等于相似比是解題的關(guān)鍵.2、【解析】【分析】根據(jù)一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關(guān)于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據(jù)一元二次方程的解,求參數(shù)的值,掌握一元二次方程解的定義是解決此題的關(guān)鍵.3、##【解析】【分析】根據(jù)點E是AB的黃金分割點,可得,代入數(shù)值得出答案.【詳解】∵點E是AB的黃金分割點,∴.∵AB=2米,∴米.故答案為:().【考點】本題主要考查了黃金分割的應(yīng)用,掌握黃金比是解題的關(guān)鍵.4、【解析】【分析】根據(jù)正方形的面積求得正方形的邊長,再由勾股定理求得正方形的對角線長即可.【詳解】∵正方形的面積為,∴正方形的邊長為9cm,∴正方形對角線的長為.故答案為.【考點】本題考查了正方形的性質(zhì),熟知正方形的性質(zhì)是解決問題的關(guān)鍵.5、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進行求解,對于相關(guān)性質(zhì)定理的熟練運用是解題的關(guān)鍵.6、②【解析】【分析】仿造案例,構(gòu)造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構(gòu)造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.故答案為②.【考點】本題考查了一元二次方程的應(yīng)用,仿造案例,構(gòu)造出合適的大正方形是解題的關(guān)鍵.7、
3x2+5x-3=0
3
5【解析】【分析】將方程展開,化簡后即可求解.【詳解】將,開展為一般形式為:;則可知一次項系數(shù)為5,二次項系數(shù)為3,故答案為:,3,5.【考點】本題主要考查了將一元二次方程化為最簡式以及判斷方程各項系數(shù)的知識,熟記相關(guān)考點概念是解答本題的關(guān)鍵.8、【解析】【分析】根據(jù)線段HF與HD也恰好關(guān)于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設(shè)元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關(guān)于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設(shè)GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關(guān)鍵是掌握翻折的性質(zhì).四、解答題1、(1)8人(2)會【解析】【分析】(1)設(shè)每輪感染中平均一個人會感染x個人,根據(jù)一個人被感染經(jīng)過兩輪感染后就會有81個人被感染,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)根據(jù)3輪感染后被感染的人數(shù)=2輪感染后被感染的人數(shù)×(1+8),即可求出3輪感染后被感染的人數(shù),再將其與700進行比較后即可得出結(jié)論.(1)設(shè)每輪感染中平均1人會感染x人,依題意,得1+x+x(1+x)=81,解得x1=8,x2=-10(不合題意,舍去).答:每輪感染中平均1人會感染8人.(2)81×(1+8)=729(人),729>700.答:若病毒得不到有效控制,3輪感染后,被感染的人會超過700人.【考點】本題考查了一元二次方程的應(yīng)用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.2、105°【解析】【分析】首先過點A作AO⊥FB的延長線于點O,連接BD,交AC于點Q,易得四邊形AOBQ是正方形,四邊形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,繼而求得答案.【詳解】作AO⊥FB的延長線,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC∵AE=AC
∴AO=AE∴∠AEO=30°∵BF∥AC
∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE
∴∠CFE∠CAE=30°∵BF∥AC
∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°【考點】本題考了正方形的性質(zhì)、平行四邊形的判定與性質(zhì)以及含30°的直角三角形的性質(zhì),解題關(guān)鍵是注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、(1)每天的總毛利潤為7820元;(2)每千克應(yīng)漲價5元;(3)每千克應(yīng)漲價15元或元【解析】【分析】(1)設(shè)每千克盈利x元,可售y千克,由此求得關(guān)于y與x的函數(shù)解析式,進一步代入求得答案即可;(2)利用每千克的盈利×銷售的千克數(shù)=總利潤,列出方程解答即可;(3)利用每天總毛利潤﹣稅費﹣人工費﹣水電房租費=每天總純利潤,列出方程解答即可.(1)解:設(shè)每千克盈利x元,可售y千克,設(shè)y=kx+b,則當x=10時,y=600,當x=11時,y=600﹣20=580,由題意得,,解得.所以銷量y與盈利x元之間的關(guān)系為y=﹣20x+800,當x=17時,y=460,則每天的毛利潤為17×460=7820元;(2)解:設(shè)每千克盈利x元,由(1)可得銷量為(﹣20x+800)千克,由題意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顧客得到實惠,應(yīng)選x=15,∴每千克應(yīng)漲價15﹣10=5元;(3)解:設(shè)每千克盈利x元,由題意得x(﹣20x+800)﹣10%x(﹣20x+800)﹣1.5(﹣20x+800)﹣300=6000,解得:x1=25,x2,則每千克應(yīng)漲價25﹣10=15元或10元.【考點】此題主要一元二次方程的實際運用,找出題目蘊含的數(shù)量關(guān)系,理解銷售問題中的基本關(guān)系是解決問題的關(guān)鍵.4、.【解析】【分析】先根據(jù)可判斷出,再根據(jù)相似三角形的對應(yīng)邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長為.【考點】本題考查相似三角形性質(zhì)的應(yīng)用.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當?shù)臄?shù)學(xué)模型來解決問題.5、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點C坐標,最后用待定系數(shù)法即可得出結(jié)論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點D的坐標,再根據(jù)三角形關(guān)系可得出當點P,C,D三點共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點C在反比例函數(shù)圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒童呼吸道合胞病毒(RSV)指南應(yīng)對指導(dǎo)
- 2025 小學(xué)四年級思想品德上冊文明上網(wǎng)承諾書課件
- 2026年劇本殺運營公司禮品采購管理制度
- 云浮行政管理培訓(xùn)課件
- 北京市房山區(qū)2024-2025學(xué)年八年級上學(xué)期期末生物試題(含答案)
- 生態(tài)農(nóng)業(yè)科普教育基地建設(shè)2025年項目技術(shù)創(chuàng)新與農(nóng)業(yè)人才培養(yǎng)計劃報告
- 2026年制造科技工業(yè)機器人報告
- 新能源汽車充電樁運營管理平臺2025年充電樁能源管理效率提升可行性報告
- 2026年及未來5年中國化工泵行業(yè)競爭格局分析及投資戰(zhàn)略咨詢報告
- 2026年及未來5年中國馬口鐵包裝容器行業(yè)市場運營現(xiàn)狀及投資規(guī)劃研究建議報告
- 醫(yī)療質(zhì)量安全自查報告范文
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價格水平調(diào)整的通知
- GB/T 19342-2024手動牙刷一般要求和檢測方法
- 物業(yè)收費技巧培訓(xùn)
- 電子技術(shù)基礎(chǔ)(模擬電子電路)
- 復(fù)方蒲公英注射液的藥代動力學(xué)研究
- 單純皰疹病毒感染教學(xué)演示課件
- 廣東省中山市2023-2024學(xué)年四年級上學(xué)期期末數(shù)學(xué)試卷
- 地質(zhì)勘查現(xiàn)場安全風險管控清單
- 松下panasonic-經(jīng)銷商傳感器培訓(xùn)
- 中醫(yī)舌、脈象的辨識與臨床應(yīng)用課件
評論
0/150
提交評論