解析卷滬科版9年級下冊期末試卷附參考答案詳解【培優(yōu)】_第1頁
解析卷滬科版9年級下冊期末試卷附參考答案詳解【培優(yōu)】_第2頁
解析卷滬科版9年級下冊期末試卷附參考答案詳解【培優(yōu)】_第3頁
解析卷滬科版9年級下冊期末試卷附參考答案詳解【培優(yōu)】_第4頁
解析卷滬科版9年級下冊期末試卷附參考答案詳解【培優(yōu)】_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.2、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.3、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.4、下列關(guān)于隨機事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率5、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.6、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.7、下列判斷正確的個數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等??;③半徑相等的兩個圓是等圓;④弧分優(yōu)弧和劣??;⑤同一條弦所對的兩條弧一定是等弧.A.1個 B.2個 C.3個 D.4個8、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.2、從﹣2,1兩個數(shù)中隨機選取一個數(shù)記為m,再從﹣1,0,2三個數(shù)中隨機選取一個數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數(shù)根的概率是_____.3、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.4、如圖,中,,,,將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是____________.5、在菱形ABCD中,AB=6,E為AB的中點,連結(jié)AC,DE交于點F,連結(jié)BF.記∠ABC=α(0°<α<180°).(1)當α=60°時,則AF的長是_____;(2)當α在變化過程中,BF的取值范圍是_____.6、AB是的直徑,點C在上,,點P在線段OB上運動.設,則x的取值范圍是________.7、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.三、解答題(7小題,每小題0分,共計0分)1、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機抽取一張(不放回),求兩人抽到動物園和森林公園的概率.2、小宇和小偉玩“石頭、剪刀、布”的游戲.這個游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢相同不分勝負.如果二人同時隨機出手(分別出三種手勢中的一種手勢)一次,那么小宇獲勝的概率是多少?3、隨著“新冠肺炎”疫情防控形勢日漸好轉(zhuǎn),各地開始復工復學,某校復學后成立“防疫志愿者服務隊”,設立四個“服務監(jiān)督崗”:①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就餐監(jiān)督崗,④操場活動監(jiān)督崗.李老師和王老師報名參加了志愿者服務工作,學校將報名的志愿者隨機分配到四個監(jiān)督崗.(1)王老師被分配到“就餐監(jiān)督崗”的概率為;(2)用列表法或畫樹狀圖法,求李老師和王老師被分配到同一個監(jiān)督崗的概率.4、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.5、定理:一條弧所對的圓周角等于這條弧所對的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長.(2)當點E在線段OA上時,若△DOE與△AEC相似,求∠DCA的正切值.(3)當OE=1時,求點A與點D之間的距離(直接寫出答案).6、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).7、解題與遐想.如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數(shù)學劉老師:大家想一想,既然結(jié)果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內(nèi)切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)-參考答案-一、單選題1、B【分析】根據(jù)“把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關(guān)鍵.2、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、C【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關(guān)鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后重合.4、D【分析】根據(jù)隨機事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機性的規(guī)律,但每次試驗出現(xiàn)的結(jié)果具有不確定,故選項A、B錯誤;隨機事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.6、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.7、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等??;故②不正確③半徑相等的兩個圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側(cè),故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點睛】本題考查了圓相關(guān)概念,掌握弦與弧的關(guān)系以及相關(guān)概念是解題的關(guān)鍵.8、D【分析】連接,根據(jù)求得半徑,進而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關(guān)系可得,即可證明是等邊三角形,求得,進而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關(guān)系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關(guān)鍵.二、填空題1、2【分析】根據(jù)扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.2、【分析】先畫樹狀圖列出所有等可能結(jié)果,從中找到使方程有兩個不相等的實數(shù)根,即m>n的結(jié)果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結(jié)果,其中能使方程x2-mx+n=0有兩個不相等的實數(shù)根,即m2-4n>0,m2>4n的結(jié)果有4種結(jié)果,∴關(guān)于x的一元二次方程x2-mx+n=0有兩個不相等的實數(shù)根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結(jié)合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關(guān)鍵.3、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.4、【分析】如圖(見解析),過點作軸于點,點作軸于點,設,從而可得,先利用勾股定理可得,從而可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)三角形全等的判定定理證出,最后根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,過點作軸于點,點作軸于點,設,則,在中,,在中,,,解得,,由旋轉(zhuǎn)的性質(zhì)得:,,,,在和中,,,,,故答案為:.【點睛】本題考查了勾股定理、旋轉(zhuǎn)、點坐標等知識點,畫出圖形,通過作輔助線,正確找出兩個全等三角形是解題關(guān)鍵.5、2【分析】(1)證明是等邊三角形,,進而即可求得;(2)過點作,交于點,以為圓心長度為半徑作半圓,交的延長延長線于點,證明在半圓上,進而即可求得范圍.【詳解】(1)如圖,四邊形是菱形,是等邊三角形是的中點即故答案為:2(2)如圖,過點作,交于點,以為圓心長度為半徑作半圓,交的延長延長線于點,四邊形是菱形,在以為圓心長度為半徑的圓上,又∠ABC=α(0°<α<180°)在半圓上,最小值為最大值為故答案為:【點睛】本題考查了相似三角形的性質(zhì)與判定,點與圓的位置關(guān)系求最值問題,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.6、【分析】分別求出當點P與點O重合時,當點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當點P與點O重合時,∵OA=OC,∴,即;當點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質(zhì),直徑所對的圓周角是直角的性質(zhì),正確理解點P的運動位置是解題的關(guān)鍵.7、【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應用這些知識點是解題關(guān)鍵.三、解答題1、(1);(2).【分析】(1)根據(jù)題意列表可得共有16種等可能的結(jié)果,其中兩人抽到同一景點的結(jié)果有4種,進而由概率公式求解即可;(2)根據(jù)題意列表可得共有12種等可能的結(jié)果,其中兩人抽到動物園和森林公園的結(jié)果有2種,進而由概率公式求解即可.【詳解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情況數(shù)為16種,兩人抽到同一景點的結(jié)果有4種,所以兩人抽到同一景點的概率為.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情況數(shù)為12種,其中兩人抽到動物園和森林公園的結(jié)果有2種,所以兩人抽到動物園和森林公園的概率為.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.2、小宇獲勝的概率是,見解析.【分析】根據(jù)題意畫樹狀圖表示出所有等可能的情況,繼而解題.【詳解】解:畫樹狀圖如下,所有機會均等的情況共9種,小宇獲勝的概率為:,答:小宇獲勝的概率是.【點睛】本題考查用列表法或畫樹狀圖表示概率,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.3、(1);(2)李老師和王老師被分配到同一個監(jiān)督崗的概率為.【分析】(1)直接利用概率公式計算;(2)畫樹狀圖展示所有16種等可能的結(jié)果,找出李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】解:(1)因為設立了四個“服務監(jiān)督崗”:“洗手監(jiān)督崗”,“戴口罩監(jiān)督崗”,“戴口罩監(jiān)督崗”,“就餐監(jiān)督崗”而“操場活動監(jiān)督崗”是其中之一,∴王老師被分配到“就餐監(jiān)督崗”的概率=;故答案為:;(2)畫樹狀圖為:由樹狀圖可知共有16種等可能的結(jié)果,其中李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù)為4,∴李老師和王老師被分配到同一個監(jiān)督崗的概率==.【點睛】本題考查了列舉法求解概率,列表法與樹狀圖法求解概率:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.4、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1)8(2)(3)或.【分析】(1)過點O作OH⊥AC于點H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長,即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點O作OH⊥AC于點H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當△DOE與△AEC相似時可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當△DOE與△AEC相似時,不存在∠DOE=∠ACD情況,∴當△DOE與△AEC相似時,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當點E在線段OA上時,如圖3,過點E作EG⊥AC于G,過點O作OH⊥AC于H,延長AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當點E在線段AO的延長線上時,如圖4,延長AO交⊙O于M,連接AD,DM,過點E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,綜上所述:AD的長是或【點睛】本題考查了垂徑定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性質(zhì)與判定,圓周角定理,正切的作出輔助線是解題的關(guān)鍵.6、A'(-1,-3),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論