基礎強化人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題_第1頁
基礎強化人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題_第2頁
基礎強化人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題_第3頁
基礎強化人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題_第4頁
基礎強化人教版8年級數(shù)學上冊《全等三角形》定向攻克練習題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(

)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;

(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.52、如圖,已知,添加以下條件,不能判定的是(

)A. B.C. D.3、“經(jīng)過已知角一邊上的一點作“個角等于已知角”的尺規(guī)作圖過程如下:已知:如圖(1),∠AOB和OA上一點C.求作:一個角等于∠AOB,使它的頂點為C,一邊為CA.作法:如圖(2),(1)在0A上取一點D(OD<OC),以點O為圓心,OD長為半徑畫弧,交OB于點E;(2)以點C為圓心,OD長為半徑畫弧,交CA于點F,以點F為圓心,DE長為半徑畫弧,兩弧交于點C;(3)作射線CC.所以∠CCA就是所求作的角此作圖的依據(jù)中不含有()A.三邊分別相等的兩個三角形全等 B.全等三角形的對應角相等C.兩直線平行同位角相等 D.兩點確定一條直線4、如圖,△ABC中,已知∠B=∠C,點E,F(xiàn),P分別是AB,AC,BC上的點,且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(

)A.34° B.36° C.38° D.40°5、如圖,已知.能直接判斷的方法是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分別為E,D,AD=25,DE=17,則BE=_____.2、如圖,在中,,點,都在邊上,,若,則的長為_______.3、如圖,四邊形ABCD≌四邊形A′B′C′D′,則∠A的大小是______.4、如圖,在中,,AD是的角平分線,過點D作,若,則______.5、如圖,小明與小紅玩蹺蹺板游戲,如果蹺蹺板的支點O(即蹺蹺板的中點)至地面的距離是50cm,當小紅從水平位置CD下降30cm時,這時小明離地面的高度是___cm.三、解答題(5小題,每小題10分,共計50分)1、如圖,D是△ABC的邊AC上一點,點E在AC的延長線上,ED=AC,過點E作EF∥AB,并截取EF=AB,連接DF.求證:DF=CB.2、在中,,點D是直線BC上一點(點D不與點B,C重合),以AD為一邊在AD的右側(cè)作,使,,連接CE.(1)如圖(1),若點D在線段BC上,和之間有怎樣的數(shù)量關系?(不必說明理由)(2)若,當點D在射線BC上移動時,如圖(2),和之間有怎樣的數(shù)量關系?說明理由.3、小明的學習過程中,對教材中的一個有趣問題做如下探究:(1)【習題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點.求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點,使得,角平分線交于點.的外角的平分線所在直線與的延長線交于點.若,求的度數(shù).4、如圖,已知,.求證:.5、如圖,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求證:BC=DE.-參考答案-一、單選題1、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結(jié)論(4)正確.∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯誤.綜上所知正確的結(jié)論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關鍵.2、D【解析】【分析】全等三角形的判定有SAS,ASA,AAS,SSS,根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:在△ABC和△CDA中,,AC=CA;A.添加∠2=∠3,可用ASA判定;B.添加∠B=∠D,可用AAS判定;C.添加BC=DA,可用SAS判定;D.添加AB=DC,是SSA不能判定故選:D【考點】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理的內(nèi)容是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3、C【解析】【分析】根據(jù)題意知,作圖依據(jù)有全等三角形的判定定理SSS,全等三角形的性質(zhì)和兩點確定一條直線,直接判斷即可.【詳解】解:由題意可得:由全等三角形的判定定理SSS可以推知△EOD≌△GCF,故A正確;結(jié)合該全等三角形的性質(zhì)對應角相等,故B正確;作射線CG,利用兩點確定一條直線,故D正確;故選:C.【考點】本題考查作一個角等于已知角和三角形全等的判定與性質(zhì),解題關鍵是明確作圖原理,準確進行判斷.4、A【解析】【分析】由三角形內(nèi)角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質(zhì)便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點】本題考查了三角形內(nèi)角和定理,全等三角形的判定和性質(zhì),三角形外角的性質(zhì);掌握全等三角形的判定定理和性質(zhì)是解題關鍵.5、A【解析】【分析】根據(jù)三角形全等的判定定理解答.【詳解】在△ABC和△DCB中,,∴(SAS),故選:A.【考點】此題考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根據(jù)已知條件找到全等所需的對應相等的邊或角是解題的關鍵.二、填空題1、8【解析】【分析】可先證明△BCE≌△CAD,可求得CE=AD,結(jié)合條件可求得CD,則可求得BE.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案為:8.【考點】本題主要考查全等三角形的判定和性質(zhì);證明三角形全等得出對應邊相等是解決問題的關鍵.2、9.【解析】【分析】根據(jù)等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì)即可求解.【詳解】因為△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考點】此題主要考查等腰三角形的性質(zhì),解題的關鍵是熟知全等三角形的判定與性質(zhì).3、95°【解析】【分析】根據(jù)兩個多邊形全等,則對應角相等四邊形以及內(nèi)角和即可完成【詳解】∵四邊形ABCD≌四邊形A′B′C′D′∴∠D=∠D′=130゜∵四邊形ABCD的內(nèi)角和為360゜∴∠A=360゜-∠B-∠C-∠D=95゜故答案為:95゜【考點】本題考查了多邊形全等的性質(zhì)、多邊形的內(nèi)角和定理,掌握多邊形全等的性質(zhì)是關鍵.4、7【解析】【分析】先利用角平分線性質(zhì)證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點】本題主要考查了角平分線的性質(zhì),解題的關鍵是熟練掌握角平分線的性質(zhì).5、80【解析】【分析】根據(jù)題意可得:OF=OG,OC=OD,利用已知條件判斷出△OFC≌△OGD,得到CF=DG,即可求出答案.【詳解】∵O是FG和CD的中點∴OF=OG,OC=OD在△OFC和△OGD中∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明離地面的高度=支點到地面的高度+CF=50+30=80cm故答案為80【考點】本題主要考查了三角形全等知識的應用,用數(shù)學方法解決生活中有關的實際問題,把實際問題轉(zhuǎn)換成數(shù)學問題,用數(shù)學方法加以論證,最后進行求解,是一種十分重要的方法.三、解答題1、證明過程見解析【解析】【分析】根據(jù)EF∥AB,得到,再根據(jù)已知條件證明,即可得解;【詳解】∵EF∥AB,∴,在和中,,∴,∴;【考點】本題主要考查了全等三角形的判定與性質(zhì),準確分析判斷是解題的關鍵.2、(1);(2),理由見解析【解析】【分析】(1)根據(jù)題意證明,根據(jù)三角形的內(nèi)角和即可求解;(2)設AD與CE交于F點,根據(jù)題意證明,根據(jù)平角的性質(zhì)即可求解.【詳解】(1).理由如下:,.,,,,∴=∵∴;(2).理由如下:設AD與CE交于F點.,.,,,.,.,,.【考點】此題主要考查全等三角形的判定與性質(zhì),解題的關鍵是熟知全等三角形的判定定理.3、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外角的性質(zhì)可得結(jié)論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質(zhì)可求∠GAF=65°,由余角的性質(zhì)可求解;(3)由平角的性質(zhì)和角平分線的性質(zhì)可求∠EAN=90°,由外角的性質(zhì)可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF為∠BAG的角平分線,∴∠GAF=∠DAF130°=65°,∵CD為AB邊上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;(3)證明:∵C、A、G三點共線,AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.∴∠CFE=90°﹣∠M=90°﹣35°=55°.【考點】本題考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,余角的性質(zhì)等知識,靈活運用這些性質(zhì)解決問題是解題的關鍵.4、見詳解.【解析】【分析】根據(jù)SSS定理推出△ADB≌△BCA即可證明.【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論