考點攻克青海省德令哈市中考數(shù)學(xué)能力檢測試卷附答案詳解(研優(yōu)卷)_第1頁
考點攻克青海省德令哈市中考數(shù)學(xué)能力檢測試卷附答案詳解(研優(yōu)卷)_第2頁
考點攻克青海省德令哈市中考數(shù)學(xué)能力檢測試卷附答案詳解(研優(yōu)卷)_第3頁
考點攻克青海省德令哈市中考數(shù)學(xué)能力檢測試卷附答案詳解(研優(yōu)卷)_第4頁
考點攻克青海省德令哈市中考數(shù)學(xué)能力檢測試卷附答案詳解(研優(yōu)卷)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

青海省德令哈市中考數(shù)學(xué)能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、把四張撲克牌所擺放的順序與位置如下,小楊同學(xué)選取其中一張撲克牌把他顛倒后在放回原來的位置,那么撲克牌的擺放順序與位置都沒變化,那么小楊同學(xué)所選的撲克牌是(

)A. B. C. D.2、如圖,已知是的兩條切線,A,B為切點,線段交于點M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(

)A.1 B.2 C.3 D.43、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當(dāng)水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當(dāng)水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米4、當(dāng)0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,45、2019年女排世界杯于9月在日本舉行,中國女排以十一連勝的驕人成績衛(wèi)冕冠軍,充分展現(xiàn)了團(tuán)隊協(xié)作、頑強拼搏的女排精神.如圖是某次比賽中墊球時的動作,若將墊球后排球的運動路線近似的看作拋物線,在同一豎直平面內(nèi)建立如圖所示的直角坐標(biāo)系,已知運動員墊球時(圖中點A)離球網(wǎng)的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網(wǎng)上端0.26米處(圖中點B)越過球網(wǎng)(女子排球賽中球網(wǎng)上端距地面的高度為2.24米),落地時(圖中點)距球網(wǎng)的水平距離為2.5米,則排球運動路線的函數(shù)表達(dá)式為(

)A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點A,連接AO并延長交⊙O于點B;②以點B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點;③連接CO,DO并延長分別交⊙O于點E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點G B.∠FGA=∠FOAC.點G是線段EF的三等分點 D.EF=AF2、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結(jié)論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°3、如圖,拋物線過點,對稱軸是直線.下列結(jié)論正確的是(

)A.B.C.若關(guān)于x的方程有實數(shù)根,則D.若和是拋物線上的兩點,則當(dāng)時,4、在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象不可能是()A. B.C. D.5、下列說法正確的是(

)A.“射擊運動員射擊一次,命中靶心”是隨機(jī)事件B.某彩票的中獎機(jī)會是1%,買100張一定會中獎C.拋擲一枚質(zhì)地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學(xué)生,為了解學(xué)生最喜歡的課外體育運動項目,隨機(jī)抽取了200名學(xué)生,其中有85名學(xué)生表示最喜歡的項目是跳繩,估計該校最喜歡的課外體育運動項目為跳繩的有1360人第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,已知是的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.2、如圖,二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),它的對稱軸為直線x=1,則下列結(jié)論中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一個根在2,3之間,正確的有_______(填序號).3、如圖,△ABC和△DEC關(guān)于點C成中心對稱,若AC=1,AB=2,∠BAC=90°,則AE的長是_________.4、如圖,是等邊三角形,點D為BC邊上一點,,以點D為頂點作正方形DEFG,且,連接AE,AG.若將正方形DEFG繞點D旋轉(zhuǎn)一周,當(dāng)AE取最小值時,AG的長為________.5、對于任意實數(shù),拋物線與軸都有公共點.則的取值范圍是_______.四、解答題(6小題,每小題10分,共計60分)1、如圖,已知點在上,點在外,求作一個圓,使它經(jīng)過點,并且與相切于點.(要求寫出作法,不要求證明)2、如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當(dāng)?shù)闹荛L最小時,點的坐標(biāo)為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標(biāo);(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.3、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應(yīng)的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).4、端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅統(tǒng)計圖補充完整;(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準(zhǔn)備了四種粽子各一個,請用“列表法”或“畫樹形圖”的方法,求出小明同時選中花生粽子和紅棗粽子的概率.5、解一元二次方程(1)(2)6、渠縣是全國優(yōu)質(zhì)黃花主產(chǎn)地,某加工廠加工黃花的成本為30元/千克,根據(jù)市場調(diào)查發(fā)現(xiàn),批發(fā)價定為48元/千克時,每天可銷售500千克.為增大市場占有率,在保證盈利的情況下,工廠采取降價措施.批發(fā)價每千克降低1元,每天銷量可增加50千克.(1)寫出工廠每天的利潤元與降價元之間的函數(shù)關(guān)系.當(dāng)降價2元時,工廠每天的利潤為多少元?(2)當(dāng)降價多少元時,工廠每天的利潤最大,最大為多少元?(3)若工廠每天的利潤要達(dá)到9750元,并讓利于民,則定價應(yīng)為多少元?-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,圖形是中心對稱圖形即可得出答案.【詳解】由題意可知,圖形是中心對稱圖形,可得答案為D,故選:D.【考點】本題考查了圖形的中心對稱的性質(zhì),掌握中心圖形的性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點,連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點A(b,0),則設(shè)頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標(biāo)為-7,∴點E坐標(biāo)為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當(dāng)x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.4、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當(dāng)x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點式是解答本題的關(guān)鍵.5、A【解析】【分析】由題意可知點A坐標(biāo)為(-5,0.5),點B坐標(biāo)為(0,2.5),點C坐標(biāo)為(2.5,0),設(shè)排球運動路線的函數(shù)表達(dá)式為:y=ax2+bx+c,將點A、B、C的坐標(biāo)代入得關(guān)于a、b、c的三元一次方程組,解得a、b、c的值,則函數(shù)解析式可得,從而問題得解.【詳解】解:由題意可知點A坐標(biāo)為(-5,0.5),點B坐標(biāo)為(0,2.5),點C坐標(biāo)為(2.5,0)設(shè)排球運動路線的函數(shù)解析式為:y=ax2+bx+c,∵排球經(jīng)過A、B、C三點,,解得:,∴排球運動路線的函數(shù)解析式為,故選:A.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關(guān)系式并求得關(guān)系式,數(shù)形結(jié)合并明確二次函數(shù)的一般式是解題的關(guān)鍵.二、多選題1、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點G是線段EF的三等分點,故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯誤,故答案為:ABC.【考點】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識,解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.2、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結(jié)合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結(jié)論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關(guān)性質(zhì)的綜合應(yīng)用,在本題中借用切線的性質(zhì),求得相應(yīng)角的度數(shù)是解題的關(guān)鍵.3、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側(cè),∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當(dāng)x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當(dāng)x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關(guān)于x的方程有實數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.4、ABD【解析】【分析】首先根據(jù)圖形中給出的一次函數(shù)圖象確定a、b的符號,進(jìn)而運用二次函數(shù)的性質(zhì)判斷圖形中給出的二次函數(shù)的圖象是否符合題意,根據(jù)選項逐一討論解析,即可解決問題.【詳解】A、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,對稱軸x=<0,應(yīng)在y軸的左側(cè),圖形錯誤,故符合題意.B、對于直線y=bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線來說,圖象應(yīng)開口向下,故不合題意,圖形錯誤,故符合題意.C、對于直線y=bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線來說,圖象開口向下,對稱軸x=位于y軸的右側(cè),圖形正確,故不符合題意,D、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,圖象開口向下,a<0,故不合題意,圖形錯誤,故符合題意.故選ABD.【考點】主要考查了一次函數(shù)、二次函數(shù)圖象的性質(zhì)及其應(yīng)用問題;解題的方法是首先根據(jù)其中一次函數(shù)圖象確定a、b的符號,進(jìn)而判斷另一個函數(shù)的圖象是否符合題意;解題的關(guān)鍵是靈活運用一次函數(shù)、二次函數(shù)圖象的性質(zhì)來分析、判斷、解答.5、ACD【解析】【分析】根據(jù)隨機(jī)事件的定義(隨機(jī)事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎可判斷B;利用列舉法將所有可能列舉出來,求滿足條件的概率即可判斷C;根據(jù)計算公式列出算式,即可判斷D.【詳解】解:A、“射擊運動員射擊一次,命中靶心”是隨機(jī)事件,選項正確;B、由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎,選項說法錯誤,不符合題意;C、拋擲一枚質(zhì)地均勻的硬幣兩次,所有可能出現(xiàn)的結(jié)果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項正確;D、根據(jù)計算公式該項人數(shù)等于該項所占百分比乘以總?cè)藬?shù),,選項正確,符合題意.故選:ACD.【考點】本題主要考查隨機(jī)事件的定義,概率發(fā)生的可能性、求隨機(jī)事件的概率與求某項的人數(shù),根據(jù)等可能事件的概率公式求解是解題關(guān)鍵.三、填空題1、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.2、①②④【解析】【分析】由二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),即可判斷①;由拋物線的對稱軸為直線x=1,即可判斷②;拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,即可判斷④,由拋物線開口向下,得到a<0,再由當(dāng)x=-1時,,即可判斷③.【詳解】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),∴c=3,故①正確;∵拋物線的對稱軸為直線x=1,∴,即,故②正確;∵拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,∴拋物線與x軸的另一個交點在2到3之間,故④正確;∵拋物線開口向下,∴a<0,∵當(dāng)x=-1時,,∴即,故③錯誤,故答案為:①②④.【考點】本題主要考查了二次函數(shù)圖像的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握二次函數(shù)圖像的性質(zhì).3、2【解析】【分析】根據(jù)中心對稱的性質(zhì)AD=DE及∠D=90゜,由勾股定理即可求得AE的長.【詳解】∵△DEC與△ABC關(guān)于點C成中心對稱,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案為.【考點】本題考查了中心對稱的性質(zhì),勾股定理等知識,關(guān)鍵中心對稱性質(zhì)的應(yīng)用.4、8【解析】【分析】過點A作于M,由已知得出,得出,由等邊三角形的性質(zhì)得出,,得出,在中,由勾股定理得出,當(dāng)正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【詳解】過點A作于M,∵,∴,∴,∵是等邊三角形,∴,∵,∴,∴,在中,,當(dāng)正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,,∴在中,;故答案為8.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及最小值問題;熟練掌握正方形的性質(zhì)和等邊三角形的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】由題意易得,則有,然后設(shè),由無論a取何值時,拋物線與軸都有公共點可進(jìn)行求解.【詳解】解:由拋物線與軸都有公共點可得:,即,∴,設(shè),則,要使對于任意實數(shù),拋物線與軸都有公共點,則需滿足小于等于的最小值即可,∴,即的最小值為,∴;故答案為.【考點】本題主要考查二次函數(shù)的綜合,熟練掌握二次函數(shù)的綜合是解題的關(guān)鍵.四、解答題1、見解析【解析】【分析】先確定圓心,再確定圓的半徑,畫圓即可.【詳解】解:如圖,①連接、,②作線段的垂直平分線交的延長線于一點,交點即為,③以為圓心,或的長度為半徑作圓,④即為所求.【考點】本題考查了確定圓的條件和相切兩圓的性質(zhì),作圖是難點,注:確定圓,即確定圓心和半徑.2、(1);(2);(3)面積最大為,點坐標(biāo)為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標(biāo)為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當(dāng)EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質(zhì)可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關(guān)于直線對稱,當(dāng)點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設(shè)直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設(shè),則,當(dāng)時,面積最大為,此時點坐標(biāo)為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設(shè)N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標(biāo)為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質(zhì),靈活運用數(shù)形結(jié)合思想得到坐標(biāo)之間的關(guān)系是解題的關(guān)鍵.3、(1)y=﹣x2+2x+3;(2)①S四邊形ACFD=4;②Q點坐標(biāo)為(1,4)或(,)或(,).【解析】【分析】此題涉及的知識點是拋物線的綜合應(yīng)用,難度較大,需要有很好的邏輯思維,解題時先根據(jù)已知點的坐標(biāo)列方程求出函數(shù)解析式,然后再根據(jù)解析式和已知條件求出四邊形的面積和點的坐標(biāo).【詳解】(1)由題意可得,解得,∴拋物線解析式為y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x軸,∵A(﹣1,0),∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵點P在線段AB上,∴∠DAQ不可能為直角,∴當(dāng)△AQD為直角三角形時,有∠ADQ=90°或∠AQD=90°,i.當(dāng)∠ADQ=90°時,則DQ⊥AD,∵A(﹣1,0),D(2,3),∴直線AD解析式為y=x+1,∴可設(shè)直線DQ解析式為y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直線DQ解析式為y=﹣x+5,聯(lián)立直線DQ和拋物線解析式可得,解得或,∴Q(1,4);ii.當(dāng)∠AQD=90°時,設(shè)Q(t,﹣t2+2t+3),設(shè)直線AQ的解析式為y=k1x+b1,把A、Q坐標(biāo)代入可得,解得k1=﹣(t﹣3),設(shè)直線DQ解析式為y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,當(dāng)t=時,﹣t2+2t+3=,當(dāng)t=時,﹣t2+2t+3=,∴Q點坐標(biāo)為(,)或(,);綜上可知Q點坐標(biāo)為(1,4)或(,)或(,).【考點】此題重點考察學(xué)生對于拋物線的綜合應(yīng)用能力,熟練拋物線的圖像和性質(zhì),四邊形面積的計算方法,點坐標(biāo)的求解方式是解答本題的關(guān)鍵.4、(1)本次參加抽樣調(diào)查的居民有600人;(2)見解析;(3).【解析】【分析】(1)用喜歡B類的人數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論