解析卷-海南省五指山市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)測(cè)試試卷(含答案詳解)_第1頁
解析卷-海南省五指山市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)測(cè)試試卷(含答案詳解)_第2頁
解析卷-海南省五指山市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)測(cè)試試卷(含答案詳解)_第3頁
解析卷-海南省五指山市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)測(cè)試試卷(含答案詳解)_第4頁
解析卷-海南省五指山市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)測(cè)試試卷(含答案詳解)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

海南省五指山市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,EF與的邊BC,AC相交,則與的大小關(guān)系為(

).A. B.C. D.大小關(guān)系取決于的度數(shù)2、在△ABC中,如果∠A﹣∠B=90°,那么△ABC是()A.直角三角形 B.鈍角三角形 C.銳角三角形 D.斜三角形3、如圖,下列推理正確的是(

)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴4、如圖,在中,,,,,連接BC,CD,則的度數(shù)是()A.45° B.50° C.55° D.80°5、如圖,把沿線段折疊,使點(diǎn)落在點(diǎn)處;若,,,則的度數(shù)為(

)A. B. C. D.6、如圖,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,則∠AEB的度數(shù)為()A.100° B.110° C.120° D.130°7、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點(diǎn),如果設(shè)∠BAC=n°,那么用含n的代數(shù)式表示∠BOC的度數(shù)是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°8、如圖,已知中,,若沿圖中虛線剪去,則等于(

)A.90° B.135° C.270° D.315°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.2、下列命題中,其逆命題成立的是__.(只填寫序號(hào))①同旁內(nèi)角互補(bǔ),兩直線平行;②如果兩個(gè)角是直角,那么它們相等;③如果兩個(gè)實(shí)數(shù)相等,那么它們的平方相等;④如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.3、如圖,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD與BE交于H,則∠CHD=_____.4、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長(zhǎng)線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.5、將一副直角三角板如圖放置,已知,,,則________°.6、如圖,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度數(shù)等于_____.7、將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數(shù).2、如圖,在△中,,分別是邊,上的點(diǎn),若△≌△≌△,求的度數(shù).3、已知:如圖,.求證:.分析:如圖,欲證,只要證______.證明:,(已知)又,(

)__________.(

).(__________,____________)4、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點(diǎn)O.(1)求證:.(2)如圖1,若∠A=60°,請(qǐng)直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點(diǎn),連接FO.①求證:BC?BE?CD=2OF.②延長(zhǎng)FO交BC于點(diǎn)G,若OF=2,△DEO的面積為10,直接寫出OG的長(zhǎng).5、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點(diǎn)E.P是邊BC上的動(dòng)點(diǎn)(不與B,C重合),連結(jié)AP,將△APC沿AP翻折得△APD,連結(jié)DC,記∠BCD=α.(1)如圖,當(dāng)P與E重合時(shí),求α的度數(shù).(2)當(dāng)P與E不重合時(shí),記∠BAD=β,探究α與β的數(shù)量關(guān)系.6、如圖,在線段BC上有兩點(diǎn)E,F(xiàn),在線段CB的異側(cè)有兩點(diǎn)A,D,且滿足,,,連接AF;(1)與相等嗎?請(qǐng)說明理由.(2)若,,AF平分時(shí),求的度數(shù).7、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).-參考答案-一、單選題1、C【解析】【分析】根據(jù)對(duì)頂角相等和三角形的內(nèi)角和定理即可得結(jié)論.【詳解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故選:C【考點(diǎn)】本題主要考查對(duì)頂角的性質(zhì)和三角形的內(nèi)角和定理,掌握對(duì)頂角的性質(zhì)和三角形的內(nèi)角和定理是解題的關(guān)鍵.2、B【解析】【分析】因?yàn)椤螦﹣∠B=90°,即∠A=90°+∠B,那么∠A一定大于90°,即為鈍角三角形.【詳解】解:在△ABC中,∵∠A﹣∠B=90°,∴∠A=90°+∠B>90°(∠B肯定大于0o),那么△ABC是鈍角三角形.故選:B.【考點(diǎn)】此題考查了三角形內(nèi)角和定理,解題的關(guān)鍵是得到∠A一定大于90°.3、B【解析】【分析】根據(jù)平行線的判定判斷即可.【詳解】解:A、由∠2=∠4不能推出AD∥BC,故本選項(xiàng)錯(cuò)誤;B、∵∠1=∠3,∴AD∥BC,故本選項(xiàng)正確;C、由∠4+∠D=180°不能推出AD∥BC,故本選項(xiàng)錯(cuò)誤;D、由∠4+∠B=180°不能推出AD∥BC,故本選項(xiàng)錯(cuò)誤;故選:B.【考點(diǎn)】本題考查了平行線的判定的應(yīng)用,注意:同旁內(nèi)角互補(bǔ),兩直線平行,內(nèi)錯(cuò)角相等,兩直線平行.4、B【解析】【分析】連接AC并延長(zhǎng)交EF于點(diǎn)M.由平行線的性質(zhì)得,,再由等量代換得,先求出即可求出.【詳解】解:連接AC并延長(zhǎng)交EF于點(diǎn)M.,,,,,,,故選B.【考點(diǎn)】本題主要考查了平行線的性質(zhì)以及三角形的內(nèi)角和定理,屬于基礎(chǔ)題型.5、C【解析】【分析】由于折疊,可得三角形全等,運(yùn)用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點(diǎn)落在點(diǎn)處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對(duì)應(yīng)角相等就可以解決.6、B【解析】【分析】根據(jù)兩直線平行,可得∠BAD=∠ABE=20°,因?yàn)锽E平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,從而求出∠EAB=50°,根據(jù)三角形內(nèi)角和即可得到∠AEB的度數(shù).【詳解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故選B.【考點(diǎn)】本題考查了平行線的性質(zhì),角平分線和三角形內(nèi)角和,能夠找出內(nèi)錯(cuò)角以及熟悉三角形內(nèi)角和為180°是解決本題的關(guān)鍵.7、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據(jù)三角形內(nèi)角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據(jù)三角形的外角性質(zhì)有∠BOC=∠EBD+∠BEO,計(jì)算即可得到∠BOC的度數(shù).【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點(diǎn)】本題考查了三角形的外角性質(zhì),垂直的定義以及三角形內(nèi)角和定理,掌握以上性質(zhì)定理是解答本題的關(guān)鍵.8、C【解析】【分析】如圖(見解析),先根據(jù)三角形的外角性質(zhì)可得,再根據(jù)鄰補(bǔ)角的定義即可得.【詳解】如圖,由三角形的外角性質(zhì)得:,,,故選:C.【考點(diǎn)】本題考查了三角形的外角性質(zhì)、鄰補(bǔ)角,熟練掌握三角形的外角性質(zhì)是解題關(guān)鍵.二、填空題1、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點(diǎn)進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;

假設(shè)這兩條直線不平行,則兩條直線有交點(diǎn),因?yàn)檫^直線外一點(diǎn)有且只有一條直線與已知直線平行因此,兩條直線有交點(diǎn)時(shí),它們不可能同時(shí)與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點(diǎn)】本題主要考查了反證法,在解題時(shí)要根據(jù)反證法的特點(diǎn)進(jìn)行證明是本題的關(guān)鍵.2、①④##④①【解析】【詳解】把一個(gè)命題的條件和結(jié)論互換就得到它的逆命題,再分析逆命題是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.①兩直線平行,同旁內(nèi)角互補(bǔ),正確;②如果兩個(gè)角相等,那么它們是直角,錯(cuò)誤;③如果兩個(gè)實(shí)數(shù)的平方相等,那么這兩個(gè)實(shí)數(shù)相等,錯(cuò)誤;④如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,正確.故答案為①④.3、45°##45°【解析】【分析】延長(zhǎng)CH交AB于點(diǎn)F,銳角三角形三條高交于一點(diǎn),所以CF⊥AB,再根據(jù)三角形內(nèi)角和定理得出答案.【詳解】解:延長(zhǎng)CH交AB于點(diǎn)F,在△ABC中,三邊的高交于一點(diǎn),所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三內(nèi)角之和為180°,∴∠CHD=45°,故答案為:45°.【考點(diǎn)】本題考查三角形中,三條邊的高交于一點(diǎn),且內(nèi)角和為180°.4、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和是180°.5、105【解析】【分析】根據(jù)平行線的性質(zhì)可得,根據(jù)三角形內(nèi)角和定理以及對(duì)頂角相等即可求解.【詳解】,,,∵∠E=60°,∴∠F=30°,故答案為:105【考點(diǎn)】本題考查了平行線的性質(zhì),三角形內(nèi)角和定理,掌握平行線的性質(zhì)是解題的關(guān)鍵.6、110°##110度【解析】【分析】由三角形的內(nèi)角和可求得∠BAC=60°,再由角平分線的定義得∠BAD=30°,利用三角形的外角性質(zhì)即可求∠ADC的度數(shù).【詳解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案為:110°.【考點(diǎn)】本題主要考查三角形的外角性質(zhì),三角形的內(nèi)角和定理,角平分線的定義,解答的關(guān)鍵是對(duì)相應(yīng)的知識(shí)的掌握.7、40°【解析】【分析】直接利用三角形內(nèi)角和定理得出∠6+∠7的度數(shù),進(jìn)而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案為40°.【考點(diǎn)】主要考查了三角形內(nèi)角和定理,正確應(yīng)用三角形內(nèi)角和定理是解題關(guān)鍵.三、解答題1、∠DEC=58°.【解析】【分析】先根據(jù)∠A=55°,∠ACB=70°得出∠ABC的度數(shù),再由∠ABD=32°得出∠CBD的度數(shù),根據(jù)CE平分∠ACB得出∠BCE的度數(shù),最后用三角形的外角即可得出結(jié)論.【詳解】在△ABC中,∵∠A=55°,∠ACB=70°,∴∠ABC=55°,∵∠ABD=32°,∴∠CBD=∠ABC-∠ABD=23°,∵CE平分∠ACB,∴∠BCE=∠ACB=35°,∴在△BCE中,∠DEC=∠CBD+∠BCE=58°.【考點(diǎn)】此題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握這些性質(zhì)是解題的關(guān)鍵.2、30°【解析】【分析】根據(jù)全等三角形的性質(zhì)及三角形內(nèi)角和定理,即可求得.【詳解】解:∵△≌△≌△,∴,,又∵,∴,∴,

∵,∴,∴.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理,求得是解決本題的關(guān)鍵.3、;對(duì)頂角相等;;等量代換;同位角相等,兩直線平行.【解析】【分析】根據(jù)等量代換和同位角相等,兩直線平行即可得出結(jié)果.【詳解】分析:如圖,欲證,只要證.證明:,(已知)又,(對(duì)頂角相等).(等量代換).(同位角相等,兩直線平行)【考點(diǎn)】本題主要考查平行線的判定,屬于基礎(chǔ)題,掌握平行線的判定定理是解題的關(guān)鍵.4、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長(zhǎng)OF到點(diǎn)M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點(diǎn)O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長(zhǎng)OF到點(diǎn)M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點(diǎn),∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點(diǎn)O作CE,BD的垂線,分別交BC于點(diǎn)K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點(diǎn)】本題考查了角平分線的定義、三角形內(nèi)角和定理、三角形全等的性質(zhì)和判定.解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.5、(1)25°(2)①當(dāng)點(diǎn)P在線段BE上時(shí),2α-β=50°;②當(dāng)點(diǎn)P在線段CE上時(shí),2α+β=50°【解析】【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根據(jù)AE平分∠BAC,P與E重合,可得∠ACD,從而α=∠ACB?∠ACD;(2)分兩種情況:①當(dāng)點(diǎn)P在線段BE上時(shí),可得∠ADC=∠ACD=90°?α,根據(jù)∠ADC+∠BAD=∠B+∠BCD,即可得2α?β=50°;②當(dāng)點(diǎn)P在線段

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論