考點解析廣東省連州市中考數(shù)學真題分類(勾股定理)匯編定向練習試題_第1頁
考點解析廣東省連州市中考數(shù)學真題分類(勾股定理)匯編定向練習試題_第2頁
考點解析廣東省連州市中考數(shù)學真題分類(勾股定理)匯編定向練習試題_第3頁
考點解析廣東省連州市中考數(shù)學真題分類(勾股定理)匯編定向練習試題_第4頁
考點解析廣東省連州市中考數(shù)學真題分類(勾股定理)匯編定向練習試題_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省連州市中考數(shù)學真題分類(勾股定理)匯編定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點C落在斜邊AB上的點E處,則CD長為(

)A. B. C. D.2、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(

)A.10 B.8 C.6或10 D.8或103、下面圖形能夠驗證勾股定理的有()個A.4個 B.3個 C.2個 D.1個4、在△ABC中,,那么△ABC是(

)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形5、一個直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(

)A.4.5 B.4.6 C.4.8 D.56、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=07、《九章算術》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠,問折斷處離地面的高度是多少?設折斷處離地面的高度為尺,則可列方程為(

)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在中,,將線段繞點順時針旋轉至,過點作,垂足為,若,,則的長為__.2、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.3、如圖,矩形ABCD中,AD=6,AB=8.點E為邊DC上的一個動點,△AD'E與△ADE關于直線AE對稱,當△CD'E為直角三角形時,DE的長為__.4、無蓋圓柱形杯子的展開圖如圖所示.將一根長為20cm的細木筷斜放在該杯子內,木筷露在杯子外面的部分至少有__________cm.5、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.6、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.7、如圖,在一次綜合實踐活動中,小明將一張邊長為10cm的正方形紙片ABCD,沿著BC邊上一點E與點A的連線折疊,點B'是點B的對應點,延長EB'交DC于點G,B'G=cm,則△ECG的面積為_____cm2.8、公元三世紀,我國漢代數(shù)學家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”,它由四個全等的直角三角形與中間的小正方形拼成的一個大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.三、解答題(7小題,每小題10分,共計70分)1、如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點G,連接DG并延長交BC于H,連接BG.①依題意,補全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關系,請直接寫出結論.2、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?3、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長;(2)求四邊形ABCD的面積.4、臺風是一種自然災害,它以臺風中心為圓心在周圍上千米的范圍內形成極端氣候,有極強的破壞力,有一臺風中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風中心為圓心周圍250km以內為受影響區(qū)域.(1)海港C會受臺風影響嗎?為什么?(2)若臺風的速度為20km/h,臺風影響該海港持續(xù)的時間有多長?5、如圖是一個長方形的大門,小強拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.6、在尋找某墜毀飛機的過程中,兩艘搜救艇接到消息,在海面上有疑似漂浮目標A、B.于是,一艘搜救艇以16海里/時的速度離開港口O(如圖)沿北偏東40°的方向向目標A前進,同時,另一艘搜救艇也從港口O出發(fā),以12海里/時的速度向著目標B出發(fā),1.5小時后,他們同時分別到達目標A、B.此時,他們相距30海里,請問第二艘搜救艇的航行方向是北偏西多少度?7、如圖所示,在中,,,,為邊上的中點.(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.-參考答案-一、單選題1、A【解析】【分析】先根據(jù)勾股定理求得AB的長,再根據(jù)折疊的性質求得AE,BE的長,從而利用勾股定理可求得CD的長.【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點】本題考查了折疊的性質,勾股定理等知識;熟記折疊性質并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關鍵.2、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.3、A【解析】【分析】分別計算圖形的面積進行證明即可.【詳解】解:A、由可得,故該項的圖形能夠驗證勾股定理;B、由可得,故該項的圖形能夠驗證勾股定理;C、由可得,故該項的圖形能夠驗證勾股定理;D、由可得,故該項的圖形能夠驗證勾股定理;故選:A.【考點】此題考查了圖形與勾股定理的推導,熟記勾股定理的計算公式及各種圖形面積的計算方法是解題的關鍵.4、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關鍵是利用勾股定理的逆定理解答.5、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關鍵.6、C【解析】【分析】如圖,根據(jù)等腰三角形的性質和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.7、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點】本題考查勾股定理的方程思想,解題的關鍵是根據(jù)題意利用勾股定理列出方程.二、填空題1、【解析】【分析】過作,為垂足,通過已知條件可以求得,,從而求得,再根據(jù)直角三角形的性質,即可求解.【詳解】解:過作,為垂足,,又,,又,,在與中,,,,∴,在中,,設,則由勾股定理可得即解得故答案為.【考點】此題主要考查了三角形全等的證明方法和直角三角形的有關性質,利用已知條件合理構造直角三角形是解決本題的關鍵.2、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點】此題考查勾股定理,解題關鍵在于列出方程.3、3或6【解析】【分析】分兩種情況分別求解,(1)當∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質得∠AED=∠AED′=45′,得DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關的值,計算即可.【詳解】解:當∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點】本題考查了矩形的性質、勾股定理、軸對稱的性質,熟練掌握矩形的性質、勾股定理、軸對稱的性質的綜合應用,分情況討論,作出圖形是解題關鍵.4、5【解析】【分析】根據(jù)題意直接利用勾股定理得出杯子內的筷子長度,進而得出答案.【詳解】解:由題意可得:杯子內的筷子長度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點】此題主要考查了勾股定理的應用,正確得出杯子內筷子的長是解決問題的關鍵.5、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點】本題考查勾股定理、完全平方公式的變形求值、三角形面積計算的運用,熟知勾股定理是解題的關鍵.6、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.7、【解析】【分析】根據(jù)翻折的性質可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點】本題考查了勾股定理的應用,結合全等的知識找出題中的線段之間的關系是本題的解題關鍵.8、169.【解析】【分析】由題意知小正方形的邊長為7.設直角三角形中較小邊長為a,較長的邊為b,運用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長為7,設直角三角形中較小邊長為a,較長的邊為b,則tanθ=短邊:長邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關鍵.三、解答題1、(1)見解析(2)①見解析;②見解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結論;(2)①依題意,補全圖形即可;②由直角三角形斜邊上的中線性質得DG=EF,BG=EF,即可得出結論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依題意,補全圖形如圖所示:②證明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中點,∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,證明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G為EF的中點,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF?∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.【考點】本題是四邊形綜合題,考查了正方形的性質、全等三角形的判定與性質、等腰直角三角形的判定與性質、直角三角形斜邊上的中線性質、等腰三角形的性質等知識;熟練掌握正方形的性質和等腰直角三角形的判定與性質,證明三角形全等是解題的關鍵,屬于中考常考題型.2、它至少5.2秒能趕回巢中.【解析】【分析】過點作于點.求出AF,EF,再根據(jù)勾股定理求出AE,從而求出時間.【詳解】解:如圖所示,米,米,米,米.過點作于點.在中,米,米,所以.所以喜鵲離巢的距離米.喜鵲趕回巢所需的時間為(秒).即它至少5.2秒能趕回巢中.【考點】考核知識點:勾股定理和逆定理運用.構造直角三角形是解題關鍵.3、(1)BD=20;(2)S四邊形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,從而可得答案;(2)利用勾股定理的逆定理證明:∠CDB=90°,再由四邊形的面積等于兩個直角三角形的面積之和可得答案.【詳解】解:(1)∵∠A=90°,AD=12,AB=16,∴BD2=AD2+AB2,∴BD2=122+162,∴BD=20;(2)∵BD2+CD2=202+152=625,CB2=252=625,∴BD2+CD2=CB2,∴∠CDB=90°,∴S四邊形ABCD=SRt△ABD+SRt△CBD,=246.【考點】本題考查的是勾股定理與勾股定理的逆定理的應用,掌握以上知識是解題的關鍵.4、(1)會,理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,從而判斷出海港C是否受臺風影響;(2)利用勾股定理得出ED以及EF的長,進而得出臺風影響該海港持續(xù)的時間.【詳解】解:(1)如圖所示,過點C作CD⊥AB于D點,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺風中心為圓心周圍250km以內為受影響區(qū)域,∴海港C會受到臺風影響;(2)由(1)得CD=240km,如圖所示,當EC=FC=250km時,即臺風經(jīng)過EF段時,正好影響到海港C,此時△ECF為等腰三角形,∵,∴EF=140km,∵臺風的速度為20km/h,∴140÷20=7h,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論