版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省四會市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(
)A.15° B.20° C.25° D.30°2、如圖,點E在的延長線上,下列條件不能判斷的是(
)A. B. C. D.3、如圖,∠B=∠C,則∠ADC與∠AEB的大小關(guān)系是(
)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關(guān)系不確定4、如圖,已知△ABC中,BD、CE分別是△ABC的角平分線,BD與CE交于點O,如果設(shè)∠BAC=n°(0<n<180),那么∠BOE的度數(shù)是()A.90°n° B.90°n° C.45°+n° D.180°﹣n°5、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數(shù)是(
)A.108° B.104° C.96° D.92°6、如圖,下列條件中,能判斷直線a∥b的有()個.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1 B.2 C.3 D.47、下列四個選項中不是命題的是(
)A.對頂角相等B.過直線外一點作直線的平行線C.三角形任意兩邊之和大于第三邊D.如果,那么8、如圖,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,則∠AEB的度數(shù)為()A.100° B.110° C.120° D.130°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖是利用直尺和三角板過已知直線l外一點P作直線l的平行線的方法,其理由是__________.2、如圖,將分別含有、角的一副三角板重疊,使直角頂點重合,若兩直角重疊形成的角為,則圖中角的度數(shù)為_______.3、如圖,則∠A+∠B+∠C+∠D+∠E的度數(shù)是__.4、如圖,E為△ABC的BC邊上一點,點D在BA的延長線上,DE交AC于點F,∠B=46°,∠C=30°,∠EFC=70°,則∠D=______.5、將一副直角三角板如圖放置,已知,,,則________°.6、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.7、如圖,四邊形ABCD中,點M,N分別在AB,BC上,將沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B=___°.三、解答題(7小題,每小題10分,共計70分)1、(1)在銳角中,邊上的高所在直線和邊上的高所在直線的交點為,,求的度數(shù).(2)如圖,和分別平分和,當(dāng)點在直線上時,且B、P、D三點共線,,則_________.(3)在(2)的基礎(chǔ)上,當(dāng)點在直線外時,如下圖:,,求的度數(shù).2、如圖,BC⊥AD,垂足為點C,∠A27°,∠BED44°.求:(1)∠B的度數(shù);(2)∠BFD的度數(shù).3、如圖,在中,,,AD是的角平分線,求的度數(shù).4、直線MN與直線PQ相交于O,∠POM=60°,點A在射線OP上運動,點B在射線OM上運動.(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.(3)在(2)的條件下,在△CDE中,如果有一個角是另一個角的2倍,請直接寫出∠DCE的度數(shù).5、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).6、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.7、如圖,點D和點C在線段BE上,,,.求證:.-參考答案-一、單選題1、B【解析】【分析】利用三角形外角的性質(zhì),得到∠ACD與∠ABD的關(guān)系,然后用角平分線的性質(zhì)得到角相等的關(guān)系,代入計算即可得到答案.【詳解】解:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點】本題綜合考查角平分線的性質(zhì)、三角形外角的性質(zhì)、三角形內(nèi)角和等知識點.解題的關(guān)鍵是熟練的運用所學(xué)性質(zhì)去求解.2、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當(dāng)∠5=∠B時,AB∥CD,不合題意;B、當(dāng)∠1=∠2時,AB∥CD,不合題意;C、當(dāng)∠B+∠BCD=180°時,AB∥CD,不合題意;D、當(dāng)∠3=∠4時,AD∥CB,符合題意;故選:D.【考點】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關(guān)鍵.3、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點】本題主要考查三角形內(nèi)角和定理的應(yīng)用,利用了三角形內(nèi)角和為180度,此題難度不大.4、A【解析】【分析】根據(jù)BD、CE分別是△ABC的角平分線和三角形的外角,得到,再利用三角形的內(nèi)角和,得到,代入數(shù)據(jù)即可求解.【詳解】解:∵BD、CE分別是△ABC的角平分線,∴,,∴,∵,∴.故答案選:A.【考點】本題考查三角形的內(nèi)角和定理和外角的性質(zhì).涉及角平分線的性質(zhì).三角形的內(nèi)角和定理:三角形的內(nèi)角和等于.三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和.5、D【解析】【分析】根據(jù)兩直線平行,同位角相等可得∠ADE=∠B,再根據(jù)翻折變換的性質(zhì)可得∠A′DE=∠ADE,然后根據(jù)平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)平行線的判定方法,對各選項分析判斷后利用排除法求解.【詳解】解:①∵∠1=∠4,∴a∥b(內(nèi)錯角相等,兩直線平行);②∵∠3=∠5,∴a∥b(同位角相等,兩直線平行),③∵∠2+∠5=180°,∴a∥b(同旁內(nèi)角互補,兩直線平行);④∠2和∠4不是同旁內(nèi)角,所以∠2+∠4=180°不能判定直線a∥b.∴能判斷直線a∥b的有①②③,共3個.故選C.【考點】本題考查了平行線的判定,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行,解題時要認準(zhǔn)各角的位置關(guān)系.7、B【解析】【分析】判斷一件事情的語句,叫做命題.根據(jù)定義判斷即可.【詳解】解:由題意可知,A、對頂角相等,故選項是命題;B、過直線外一點作直線的平行線,是一個動作,故選項不是命題;C、三角形任意兩邊之和大于第三邊,故選項是命題;D、如果,那么,故選項是命題;故選:B.【考點】本題考查了命題與定理:判斷一件事情的語句叫命題;正確的命題稱為真命題,錯誤的命題稱為假命題;經(jīng)過推理論證的真命題稱為定理.注意:疑問句與作圖語句都不是命題.8、B【解析】【分析】根據(jù)兩直線平行,可得∠BAD=∠ABE=20°,因為BE平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,從而求出∠EAB=50°,根據(jù)三角形內(nèi)角和即可得到∠AEB的度數(shù).【詳解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故選B.【考點】本題考查了平行線的性質(zhì),角平分線和三角形內(nèi)角和,能夠找出內(nèi)錯角以及熟悉三角形內(nèi)角和為180°是解決本題的關(guān)鍵.二、填空題1、同位角相等,兩直線平行.【解析】【詳解】利用三角板中兩個60°相等,可判定平行,故答案為:同位角相等,兩直線平行考點:平行線的判定2、##140度【解析】【分析】如圖,首先標(biāo)注字母,利用三角形的內(nèi)角和求解,再利用對頂角的相等,三角形的外角的性質(zhì)可得答案.【詳解】解:如圖,標(biāo)注字母,由題意得:故答案為:【考點】本題考查的是三角形的內(nèi)角和定理,三角形的外角的性質(zhì),掌握以上知識是解題的關(guān)鍵.3、180°【解析】【分析】由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得∠4=∠A+∠2,∠2=∠D+∠C,進而利用三角形的內(nèi)角和定理求解.【詳解】解:如圖可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案為:180°.【考點】本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.4、34°##34度【解析】【分析】根據(jù)題意先求∠DAC,再依據(jù)△ADF三角形內(nèi)角和180°可得答案.【詳解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案為:34°.【考點】本題考查三角形內(nèi)角和定理及三角形一個外角等于不相鄰的兩個內(nèi)角的和,解題的關(guān)鍵是掌握三角形內(nèi)角和定理.5、105【解析】【分析】根據(jù)平行線的性質(zhì)可得,根據(jù)三角形內(nèi)角和定理以及對頂角相等即可求解.【詳解】,,,∵∠E=60°,∴∠F=30°,故答案為:105【考點】本題考查了平行線的性質(zhì),三角形內(nèi)角和定理,掌握平行線的性質(zhì)是解題的關(guān)鍵.6、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和是180°.7、95【解析】【詳解】∵MF//AD,F(xiàn)N//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案為:95三、解答題1、(1);(2);(3).【解析】【分析】(1)根據(jù)對頂角相等以及四邊形的內(nèi)角和進行判斷即可;(2)法一:根據(jù)以及和分別平分和,算出和,從而算出;法二:根據(jù)三角形的外角定理得到∠APC=∠B+∠PAB+∠PCB,再求出∠PAB+∠PCB,故可求解;(3)法一:連接AC,根據(jù)三角形的內(nèi)角和與角平分線的性質(zhì)分別求出,,故可求解;法二:連接BD并延長到G根據(jù)三角形的外角定理得到∠ADC=∠2+∠4+∠APC,再求出∠2+∠4,故可求解.【詳解】(1)如圖邊上的高所在直線和邊上的高所在直線的交點為∴又∵∴∵在四邊形中,內(nèi)角和為∴.(2)法一:∵和分別平分和∴又∵∴∴∴.法二:連接BD,∵B、P、D三點共線∴BD、AF、CE交于P點∵∠APD=∠BAP+∠ABP,∠CPD=∠BCP+∠CBP,∴∠APC=∠B+∠PAB+∠PCB∵和分別平分和,∴∠PAC=∠PAB,∠PCA=∠PCB,∵∠APC=100°,∴∠PAC+∠PCA=180°?100°=80°,∴∠PAB+∠PCB=80°,∴∠B=∠APC?(∠PAB+∠PCB)=100°?80°=20°.(3)法一:如圖:連接AC∵,∴∴又∵和分別平分和∴∴∴.法二:如圖,連接BD并延長到G,∵∠ADG=∠2+∠APD,∠CDG=∠4+∠CPD,∴∠ADC=∠2+∠4+∠APC,∴∠2+∠4=30°同理可得∠APC=∠1+∠3+∠B,∠1=∠2,∠3=∠4,∴∠B=∠APC-∠2-∠4=100°-30°=70°∴∠B=70°.【考點】本題考查三角形的外角,角平分線的定義,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.2、(1)63°;(2)107°【解析】【分析】(1)根據(jù)垂直的定義可得,進而根據(jù)三角形內(nèi)角和定理即可求得;(2)根據(jù)三角形的外角的性質(zhì)即可求得.【詳解】解:(1)BC⊥AD,∠A27°,(2)∠BED44°,【考點】本題考查了三角形的內(nèi)角和定理與三角形的外角性質(zhì),掌握以上知識是解題的關(guān)鍵.3、102°【解析】【分析】由三角形內(nèi)角和可得∠BAC=80°,然后由角平分線的定義可得,然后再根據(jù)三角形內(nèi)角和可求解.【詳解】解:在中,(三角形內(nèi)角和定理).∵,(已知),∴(等式的性質(zhì)).∵AD平分(已知),∴(角平分線的定義).在中,(三角形內(nèi)角和定理).∵(已知),(已證),∴(等式的性質(zhì)).【考點】本題主要考查角平分線的定義及三角形內(nèi)角和,熟練掌握角平分線的定義及三角形內(nèi)角和是解題的關(guān)鍵.4、(1)∠AEB的度數(shù)為120°;(2)∠CED的大小不發(fā)生變化,其值為60°;(3)∠DCE的度數(shù)為40°或80°.【解析】【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根據(jù)AE、BE分別是∠BAO和∠ABO的角平分線,可得∠EAB和∠EBA的值,在△EAB中,根據(jù)三角形內(nèi)角和即可得出∠AEB的大?。唬?)不發(fā)生變化,延長BC、AD交于點F,根據(jù)角平分線的定義以及三角形內(nèi)角和可得∠F=90°-∠AOB,∠CED=90°-∠F,即可得出∠CED的度數(shù);(3)分三種情況求解即可.【詳解】解:(1)∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分別是∠BAO和∠ABO的角平分線,∴∠EAB=∠OAB=35°,∠EBA=∠OBA=25°,∴∠AEB=180°-35°-25°=120°;(2)不發(fā)生變化,理由如下:如圖,延長BC、AD交于點F,∵點D、C分別是∠PAB和∠ABM的角平分線上的兩點,∴∠FAB=∠PAB=(180°-∠OAB),∠FBA=∠MBA=(180°-∠OBA),∴∠FAB+∠FBA=(180°-∠OAB)+(180°-∠OBA)=(180°+∠AOB)=90°+∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°-∠AOB=60°,同理可求∠CED=90°-∠F=60°;(3)①當(dāng)∠DCE=2∠E時,顯然不符合題意;②當(dāng)∠DCE=2∠CDE時,∠DCE==80°;③當(dāng)∠DCE=∠CDE時,∠DCE==40°,綜上可知,∠DCE的度數(shù)40°或80°.【考點】本題考查角平分線的定義,三角形內(nèi)角和定理,以及分類討論的數(shù)學(xué)思想,解題的關(guān)鍵是熟練掌握三角形的內(nèi)角和的定理.5、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根據(jù)三角形內(nèi)角和定理,即可得出結(jié)論.【詳解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考點】本題考查了三角形的內(nèi)角和定理,注意掌握數(shù)形結(jié)合思想的應(yīng)用.6、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山科院現(xiàn)代紡織工藝與設(shè)備教案:紡紗教案
- 福州稅務(wù)面試題目及答案
- 危機管理團隊主管面試題及答案
- 餐飲業(yè)配送經(jīng)理面試題集及答案解析
- 會計實習(xí)面試題庫及答案
- 制造業(yè)工程師面試技巧與答案
- 2025黑龍江省建工集團招聘17人筆試參考題庫附帶答案詳解(3卷合一版)
- 2025陜西旅游集團絲路歡樂世界招聘(21人)筆試參考題庫附帶答案詳解(3卷合一版)
- 康復(fù)科醫(yī)生專業(yè)能力考試題集
- 文化創(chuàng)意產(chǎn)業(yè)策劃顧問面試題
- 汽車維修保養(yǎng)常見故障處理手冊
- 財務(wù)安全生產(chǎn)費培訓(xùn)課件
- 鋼結(jié)構(gòu)施工臨時支撐方案
- 鋼結(jié)構(gòu)樓梯安裝施工方案
- 趣味運動會元旦活動方案
- ??稻W(wǎng)絡(luò)監(jiān)控系統(tǒng)的技術(shù)方案
- 村書記就職發(fā)言稿
- 2025北京市通州區(qū)不動產(chǎn)登記中心協(xié)辦員招聘1人模擬試卷及答案詳解(典優(yōu))
- 木工加工區(qū)施工方案
- 農(nóng)村勞務(wù)經(jīng)紀(jì)人培訓(xùn)課件
- 郵儲銀行二級支行長面試題庫及答案
評論
0/150
提交評論