考點(diǎn)解析-江蘇省句容市中考數(shù)學(xué)真題分類(lèi)(平行線的證明)匯編定向測(cè)試試題(含答案解析版)_第1頁(yè)
考點(diǎn)解析-江蘇省句容市中考數(shù)學(xué)真題分類(lèi)(平行線的證明)匯編定向測(cè)試試題(含答案解析版)_第2頁(yè)
考點(diǎn)解析-江蘇省句容市中考數(shù)學(xué)真題分類(lèi)(平行線的證明)匯編定向測(cè)試試題(含答案解析版)_第3頁(yè)
考點(diǎn)解析-江蘇省句容市中考數(shù)學(xué)真題分類(lèi)(平行線的證明)匯編定向測(cè)試試題(含答案解析版)_第4頁(yè)
考點(diǎn)解析-江蘇省句容市中考數(shù)學(xué)真題分類(lèi)(平行線的證明)匯編定向測(cè)試試題(含答案解析版)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省句容市中考數(shù)學(xué)真題分類(lèi)(平行線的證明)匯編定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,已知△ABC中,BD、CE分別是△ABC的角平分線,BD與CE交于點(diǎn)O,如果設(shè)∠BAC=n°(0<n<180),那么∠BOE的度數(shù)是()A.90°n° B.90°n° C.45°+n° D.180°﹣n°2、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等邊三角形 B.銳角三角形 C.鈍角三角形 D.直角三角形3、在四邊形ABCD中,如果∠B+∠C=180°,那么

()A.AB∥CD B.AD∥BC C.AB與CD相交 D.AB與DC垂直4、如圖,平面上直線a、b分別經(jīng)過(guò)線段OK的兩個(gè)端點(diǎn),則直線a、b相交所成的銳角的度數(shù)是(

)A.20° B.30°C.70° D.80°5、如圖,把沿線段折疊,使點(diǎn)落在點(diǎn)處;若,,,則的度數(shù)為(

)A. B. C. D.6、下列說(shuō)法正確的是(

)A.“任意畫(huà)一個(gè)三角形,其內(nèi)角和為”是必然事件 B.調(diào)查全國(guó)中學(xué)生的視力情況,適合采用普查的方式C.抽樣調(diào)查的樣本容量越小,對(duì)總體的估計(jì)就越準(zhǔn)確 D.十字路口的交通信號(hào)燈有紅、黃、綠三種顏色,所以開(kāi)車(chē)經(jīng)過(guò)十字路口時(shí),恰好遇到黃燈的概率是7、如圖,將△ABC紙片沿DE折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A’,若∠B=60°,∠C=80°,則∠1+∠2等于(

)A.40° B.60° C.80° D.140°8、在△ABC中,如果∠A﹣∠B=90°,那么△ABC是()A.直角三角形 B.鈍角三角形 C.銳角三角形 D.斜三角形第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在四邊形中,,,,的延長(zhǎng)線與、相鄰的兩個(gè)角的平分線交于點(diǎn)E,若,則的度數(shù)為_(kāi)__________.2、如圖,,的平分線交于點(diǎn),是上的一點(diǎn),的平分線交于點(diǎn),且,下列結(jié)論:①平分;②;③與互余的角有個(gè);④若,則.其中正確的是________.(請(qǐng)把正確結(jié)論的序號(hào)都填上)3、下列說(shuō)法:(1)兩點(diǎn)之間的所有連線中,線段最短;(2)相等的角是對(duì)頂角;(3)過(guò)一點(diǎn)有且僅有一條直線與已知直線平行;(4)長(zhǎng)方體是四棱柱.其中正確的有______(填正確說(shuō)法的序號(hào)).4、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點(diǎn)F,G為△ABC外一點(diǎn),∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫(xiě)序號(hào)).5、“兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等”是___命題.(填“真”或“假”)6、如圖,點(diǎn)O是△ABC的三條角平分線的交點(diǎn),連結(jié)AO并延長(zhǎng)交BC于點(diǎn)D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點(diǎn)N,OH⊥BC于點(diǎn)H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號(hào))7、把“對(duì)頂角相等”改寫(xiě)成“如果…那么…”的形式____________________________________________.三、解答題(7小題,每小題10分,共計(jì)70分)1、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).2、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過(guò)O點(diǎn)且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大??;(2)若∠A=60°,求∠BOC的大??;(3)直接寫(xiě)出∠A與∠BOC的關(guān)系是∠BOC=.(用∠A表示出來(lái))3、如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.(1)求∠CBE的度數(shù);(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).4、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關(guān)系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關(guān)系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關(guān)系.5、如圖:∠1+∠2=180°,∠C=∠D,則∠A=∠F嗎?請(qǐng)說(shuō)明理由.6、如圖,BD⊥AC于點(diǎn)D,EF⊥AC于點(diǎn)F,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC的度數(shù);(2)求證:DM∥BC.7、如圖,ABCD,垂足為O,點(diǎn)P、Q分別在射線OC、OA上運(yùn)動(dòng)(點(diǎn)P、Q都不與點(diǎn)O重合),QE是∠AQP的平分線.(1)如圖1,在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,若直線QE交∠DPQ的平分線于點(diǎn)H.①當(dāng)∠PQB=60°時(shí),∠PHE=°;②隨著點(diǎn)P、Q分別在OC、OA的運(yùn)動(dòng),∠PHE的大小是否是定值?如果是定值,請(qǐng)求出∠PHE的度數(shù);如果不是定值,請(qǐng)說(shuō)明理由;(2)如圖2,若QE所在直線交∠QPC的平分線于點(diǎn)E時(shí),將△EFG沿FG折疊,使點(diǎn)E落在四邊形PFGQ內(nèi)點(diǎn)E′的位置,猜測(cè)∠PFE′與∠QGE′之間的數(shù)量關(guān)系,并說(shuō)明理由.-參考答案-一、單選題1、A【解析】【分析】根據(jù)BD、CE分別是△ABC的角平分線和三角形的外角,得到,再利用三角形的內(nèi)角和,得到,代入數(shù)據(jù)即可求解.【詳解】解:∵BD、CE分別是△ABC的角平分線,∴,,∴,∵,∴.故答案選:A.【考點(diǎn)】本題考查三角形的內(nèi)角和定理和外角的性質(zhì).涉及角平分線的性質(zhì).三角形的內(nèi)角和定理:三角形的內(nèi)角和等于.三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和.2、D【解析】【分析】由于∠A-∠C=∠B,再結(jié)合∠A+∠B+∠C=180°,易求∠A,進(jìn)而可判斷三角形的形狀.【詳解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故選D.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,求出∠A的度數(shù)是解題的關(guān)鍵.3、A【解析】【分析】∠B與∠C是直線AB,CD被直線BC所截構(gòu)成的同旁?xún)?nèi)角,根據(jù)∠B+∠C=180°,得到AB∥CD.【詳解】∵∠B+∠C=180°,∴AB∥CD(同旁?xún)?nèi)角互補(bǔ),兩直線平行).故選A.【考點(diǎn)】正解找出“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補(bǔ)關(guān)系的角就誤認(rèn)為具有平行關(guān)系,只有同位角相等、內(nèi)錯(cuò)角相等、同旁?xún)?nèi)角互補(bǔ),才能推出兩被截直線平行.4、B【解析】【分析】根據(jù)三角形的外角的性質(zhì)列式計(jì)算即可.【詳解】解:如圖:由三角形的外角的性質(zhì)可知,∠OFK+70°=100°,解得,∠OFK=30°,故選B.【考點(diǎn)】本題考查的是三角形的外角的性質(zhì),掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.5、C【解析】【分析】由于折疊,可得三角形全等,運(yùn)用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點(diǎn)落在點(diǎn)處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對(duì)應(yīng)角相等就可以解決.6、A【解析】【分析】由三角形的內(nèi)角和定理可判斷A,由抽樣調(diào)查與普查的含義可判斷B,C,由簡(jiǎn)單隨機(jī)事件的概率可判斷D,從而可得答案.【詳解】解:“任意畫(huà)一個(gè)三角形,其內(nèi)角和為”是必然事件,表述正確,故A符合題意;調(diào)查全國(guó)中學(xué)生的視力情況,適合采用抽樣調(diào)查的方式,故B不符合題意;抽樣調(diào)查的樣本容量越小,對(duì)總體的估計(jì)就越不準(zhǔn)確,故C不符合題意;十字路口的交通信號(hào)燈有紅、黃、綠三種顏色,所以開(kāi)車(chē)經(jīng)過(guò)十字路口時(shí),恰好遇到黃燈的概率不是,與三種燈的閃爍時(shí)間相關(guān),故D不符合題意;故選A【考點(diǎn)】本題考查的是必然事件的含義,調(diào)查方式的選擇,簡(jiǎn)單隨機(jī)事件的概率,三角形的內(nèi)角和定理的含義,掌握“以上基礎(chǔ)知識(shí)”是解本題的關(guān)鍵.7、C【解析】【分析】根據(jù)平角定義和折疊的性質(zhì),得,再利用三角形的內(nèi)角和定理進(jìn)行轉(zhuǎn)換,得從而解題.【詳解】解:根據(jù)平角的定義和折疊的性質(zhì),得.又,,,∴,故選:C【考點(diǎn)】此題綜合運(yùn)用了平角的定義、折疊的性質(zhì)和三角形的內(nèi)角和定理.8、B【解析】【分析】因?yàn)椤螦﹣∠B=90°,即∠A=90°+∠B,那么∠A一定大于90°,即為鈍角三角形.【詳解】解:在△ABC中,∵∠A﹣∠B=90°,∴∠A=90°+∠B>90°(∠B肯定大于0o),那么△ABC是鈍角三角形.故選:B.【考點(diǎn)】此題考查了三角形內(nèi)角和定理,解題的關(guān)鍵是得到∠A一定大于90°.二、填空題1、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.2、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判斷①正確;由CB平分∠ACF、AE∥CF及①的結(jié)論可判斷②正確;由前兩個(gè)的結(jié)論可對(duì)③作出判斷;由AE∥CF及AC∥BG、三角形外角的性質(zhì)可求得∠BDF,從而可對(duì)④作出判斷.【詳解】∵BD平分∠GBE∴∠EBD=∠GBD=∠GBE∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正確∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正確∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴與∠DBE互余的角共有4個(gè)故③錯(cuò)誤∵AC∥BG,∠A=α∴∠GBE=α∴∵AE∥CF∴∠BGD=180°-∠GBE=180°?α∴∠BDF=∠GBD+∠BGD=故④錯(cuò)誤即正確的結(jié)論有①②故答案為:①②【考點(diǎn)】本題考查了平行線的判定與性質(zhì),互余概念,垂直的定義,角平分線的性質(zhì)等知識(shí),掌握這些知識(shí)并正確運(yùn)用是關(guān)鍵.3、(1)、(4).【解析】【分析】根據(jù)所學(xué)公理和性質(zhì)解答即可.【詳解】解:(1)兩點(diǎn)之間的所有連線中,線段最短,故本說(shuō)法正確;(2)相等的角不一定是對(duì)頂角,但對(duì)頂角相等,故本說(shuō)法錯(cuò)誤;(3)應(yīng)為過(guò)直線外一點(diǎn)有且僅有一條直線與已知直線平行,故本說(shuō)法錯(cuò)誤;(4)長(zhǎng)方體是四棱柱,正確.故答案為(1)、(4).【考點(diǎn)】本題是對(duì)數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)性的考查,記憶數(shù)學(xué)公理、性質(zhì)概念等一定要做的嚴(yán)謹(jǐn).4、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項(xiàng)的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,5、假【解析】【分析】由正確的題設(shè)得出正確的結(jié)論是真命題,由正確的題設(shè)不能得出正確結(jié)論是假命題,判定此命題的正誤即可得到答案.【詳解】解:∵當(dāng)兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等,∴兩條直線被第三條直線所截,內(nèi)錯(cuò)角有相等或不相等兩種情況∴原命題錯(cuò)誤,是假命題,故答案為假.【考點(diǎn)】本題考查了判斷命題的真假的知識(shí),解題的關(guān)鍵是根據(jù)命題作出正確的判斷,必要時(shí)可以舉出反例.6、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進(jìn)行計(jì)算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長(zhǎng)AC與E,∵點(diǎn)O是△ABC的三條角平分線的交點(diǎn),BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯(cuò)誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點(diǎn)】本題主要考查的是三角形與角平分線的綜合運(yùn)用,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.7、如果兩個(gè)角是對(duì)頂角,那么它們相等【解析】【分析】先找到命題的題設(shè)和結(jié)論,再寫(xiě)成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個(gè)角是對(duì)頂角”,結(jié)論是:“它們相等”,∴命題“對(duì)頂角相等”寫(xiě)成“如果…那么…”的形式為:“如果兩個(gè)角是對(duì)頂角,那么它們相等”.故答案為:如果兩個(gè)角是對(duì)頂角,那么它們相等.【考點(diǎn)】本題考查了命題的條件和結(jié)論的敘述,注意確定一個(gè)命題的條件與結(jié)論的方法是首先把這個(gè)命題寫(xiě)成:“如果…,那么…”的形式.三、解答題1、(1)見(jiàn)解析;(2)【解析】【分析】(1)通過(guò)證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點(diǎn)】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì).2、(1)124°(2)120°(3)90°+【解析】【分析】(1)根據(jù)角平分線定義求出∠OBC=,∠OCB=,然后利用三角形內(nèi)角和公式求解即可;(2)根據(jù)∠A=60°,結(jié)合三角形內(nèi)角和得出∠ABC+∠ACB=180°-∠A=120°,然后根據(jù)角平分線得出∠OBC=,∠OCB=,再利用三角形內(nèi)角和得出∠BOC=180°-∠OBC-∠OCB=180°-即可;(3)先根據(jù)平分線定義得出∠OBC=,∠OCB=,然后根據(jù)三角形內(nèi)角和公式得出∠BOC=180°-,再利用∠A表示即可.(1)解:∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°-26°-30°=124°;(2)解:∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=120°,∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-,=180°-60°=120°;(3)解:∠BOC=90°+.∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-=180°-=90°+.故答案為:90°+.【考點(diǎn)】本題考查三角形內(nèi)角和公式,角平分線定義,熟練掌握三角形內(nèi)角和公式,角平分線定義是解題關(guān)鍵.3、(1)65°;(2)25°.【解析】【分析】(1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°﹣∠A=50°,由鄰補(bǔ)角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=∠CBD=65°;(2)先根據(jù)直角三角形兩銳角互余的性質(zhì)得出∠CEB=90°﹣65°=25°,再根據(jù)平行線的性質(zhì)即可求出∠F=∠CEB=25°.【詳解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分線,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,直角三角形兩銳角互余的性質(zhì),平行線的性質(zhì),鄰補(bǔ)角定義,角平分線定義.掌握各定義與性質(zhì)是解題的關(guān)鍵.4、(1);(2);(3)【解析】【分析】(1)根據(jù)三角形的內(nèi)角和定理以及角平分線的定義即可確定和的數(shù)量關(guān)系;(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義可得,進(jìn)而可得和的數(shù)量關(guān)系;(3)根據(jù)三角形的內(nèi)角和定理可得,,結(jié)合角平分線的定義,根據(jù)即可確定和的數(shù)量關(guān)系.【詳解】(1)在中,.在中,.∵,,∴;(2)在中,.在中,.∵,,∴.(3)在中,.在中,.∵,.,,∴.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),角平分線的定義,熟練掌握以上知識(shí)是解題的關(guān)鍵.5、∠A=∠F,理由見(jiàn)解析【解析】【分析】∠1+∠2=180°,∠2=∠AGC,∠1+∠AGC=180°,BD∥CE,有∠C=∠ABD=∠D,得DF∥AC,進(jìn)而可說(shuō)明∠A=∠F.【詳解】解:∠A=∠F,理由如下:∵∠1+∠2=180°,∠2=∠AGC∴∠1+∠AGC=180°∴BD∥CE∴∠C=∠ABD∵∠C=∠D∴∠D=∠ABD∴DF∥AC∴∠A=∠F.【考點(diǎn)】本題考查了對(duì)頂角,平行線的判定與性質(zhì).解題的關(guān)鍵在利用角的數(shù)量關(guān)系證明直線平行.6、(1)125°;(2)證明見(jiàn)解析【解析】【分析】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根據(jù)平行線的性質(zhì)得到∠EFG=∠1=35°,再根據(jù)角的和差關(guān)系可求∠GFC的度數(shù);(2)根據(jù)平行線的性質(zhì)得到∠2=∠CBD,等量代

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論