版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
青島版8年級數(shù)學下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(
)A. B. C. D.2、下列命題中假命題是()A.有一個外角等于120°的等腰三角形是等邊三角形B.等腰三角形的兩邊長是3和7,則其周長為17C.一邊上的中線等于這條邊的一半的三角形是直角三角形D.直角三角形的三條邊的比是3:4:53、下列二次根式中,最簡二次根式是()A. B. C. D.4、下列各數(shù)是無理數(shù)的是(
)A.﹣ B.﹣1 C.﹣ D.05、如圖,有一塊直角三角形紙片,兩直角邊,.現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,則的大小為(
)A.2cm B.3cm C.4.8cm D.5cm6、將一副三角板如圖①的位置擺放,其中30°直角三角板的直角邊與等腰直角三角板的斜邊重合,30°直角三角板直角頂點與等腰直角三角板的銳角頂點重合(為點O).現(xiàn)將30°的直角三角板繞點O順時針旋轉至如圖②的位置,此時,則(
)A.30° B.25° C.20° D.15°7、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(
)A. B. C. D.8、有五根小木棒,其長度分別為7,15,24,25,現(xiàn)將它們擺成兩個直角三角形,其中正確的是()A. B.C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,點D是AB中點,在△ABC外取一點E,使DE=AD,連接DE,AE,BE,CE.若CE=-,∠ABE=30°,則AE的長為
_____.2、小明同學非常喜歡數(shù)學,他在課外書上看到了一個有趣的定理“中線長定理”:在△ABC中,若O為BC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則的最小值為______.3、如圖,點A、B在x軸上,點C在y軸的正半軸上,且AC=BC=,OC=1,P為線段AB上一點,則PC2+PA?PB的值為_____.4、的平方根為_____,的絕對值為____.5、______.6、如圖,點A坐標為(-4,-4),點B(0,m)在y軸的負半軸上沿負方向運動時,作Rt△ABC,其中∠BAC=90°.直線AC與x軸正半軸交于點C(n,0),當B點的運動過程中時,則m+n的值為______.7、計算:______.三、解答題(7小題,每小題10分,共計70分)1、如圖,四邊形ABCD是正方形,點E在BC延長線上,DF⊥AE于點F,點G在AE上,且∠ABG=∠E.求證:AG=DF.2、對于平面直角坐標系xOy中的圖形W和點P(點P在圖形W上),給出如下定義:若點,……,都在圖形W上,且,那么稱點,,……,是圖形W關于點P的“等距點”,線段,,……,是圖形W關于點P的“等距線段”.(1)如圖1,已知點B(-2,0),C(2,0),A(0,a)()①判斷:點B,C△ABC關于點O的“等距點”,線段OA,OB△ABC關于點O的“等距線段”;(填“是”或“不是”)②△ABC關于點O的兩個“等距點”,分別在邊AB,AC上,當相應的“等距線段”最短時,請在圖1中畫出線段,;(2)如圖2,已知C(4,0),A(2,2),P(3,0),若點C,D是△AOC關于點P的“等距點”,求點D的坐標;(3)如圖3,已知C(a,0)在x軸的正半軸上,.點P(x,0),△AOC關于點P的“等距點”恰好有四個,且其中一個點是點O,請直接寫出點P橫坐標的取值范圍.(用含a的式子表示)3、計算:4、如圖,已知△ABC是銳角三角形(AB>AC).(1)請用無刻度直尺和圓規(guī)作圖:作直線l,使l上的各點到B、C兩點的距離相等;設直線l與AB、BC分別交于點M、N,在線段MN上找一點O,使點O到邊AB、BC的距離相等;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,若BM=10,BC=12,求ON的長.5、某郵遞公司收費方式有兩種:方式一:郵遞物品不超過3千克,按每千克2元收費;超過3千克,3千克以內(nèi)每千克2元,超過的部分按每千克1.5元收費.方式二:基礎服務費4元,另外每千克加收1元.小王通過該郵遞公司郵寄一箱物品的質(zhì)量為x千克(x>3).(1)請分別直接寫出小王用兩種付費方式所需的郵遞費用y(元)與x(千克)之間的函數(shù)關系式,并在如圖所示的直角坐標系中畫出圖象;(2)若兩種付費方式所需郵遞費用相同,求這箱物品的質(zhì)量;(3)若采用“方式二”所需要郵遞費用比采用“方式一”便宜5元,求這箱物品的質(zhì)量.6、如圖,已知線段,利用尺規(guī)作圖的方法作一個正方形,使為正方形的對角線(保留作圖痕跡,不要求寫作法).7、如圖,在平面直角坐標系中,直線l:分別交x軸,y軸于點A、B,將△AOB繞點O順時針旋轉90°后得到.(1)求直線的解析式;(2)若直線與直線l相交于點C,求的面積.-參考答案-一、單選題1、C【解析】【詳解】A、中心對稱圖形,不符合題意;B、軸對稱圖形,不符合題意;C、軸對稱圖形,又是中心對稱圖形,符合題意;D、軸對稱圖形,不符合題意;故點C.【點睛】本題考查軸對稱圖形與中心對稱圖形的定義,軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫軸對稱圖形;中心對稱圖形的概念:在平面內(nèi),把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形與原來的圖形重合,這個圖形稱為中心對稱圖形.熟悉軸對稱圖形和中心對稱圖形的概念是本題的解題關鍵.2、D【解析】【分析】根據(jù)等邊三角形的判定定理,等腰三角形的定義,直角三角形的判定,直角三角形的三邊關系,逐項判定,即可求解.【詳解】解:A、因為該等腰三角形的一個外角等于120°,所以它的一個內(nèi)角等于60°,而有一個內(nèi)角等于60°的等腰三角形是等邊三角形,則該選項是真命題,不符合題意;B、若以3為腰,則等腰三角形的三邊長是3、3、7,而,不能夠夠成三角形,則舍去;若以7為腰,則等腰三角形的三邊長是3、7、7,則其周長為,則該選項是真命題,不符合題意;C、如圖,在三角形ABC中,CD是AB邊的中線,且,則CD=AD=BD,故∠A=∠ACD,∠B=∠BCD,所以∠A+∠B=∠ACD+∠BCD=∠ACB,所以∠ACB=90°,即三角形ABC是直角三角形,則該選項是真命題,不符合題意;D、例如直角三角形的三條邊的長是,但不滿足三條邊的比是3:4:5,則該選項是假命題,符合題意;故選:D【點睛】本題主要考查了等邊三角形的判定定理,等腰三角形的定義,直角三角形的判定,直角三角形的三邊關系,熟練掌握等邊三角形的判定定理,等腰三角形的定義,直角三角形的判定,直角三角形的三邊關系是解題的關鍵.3、C【解析】【分析】最簡二次根式是滿足下列兩個條件的二次根式:1.被開方數(shù)的因數(shù)是整數(shù),因式為整式;2.被開方因數(shù)因式不能再被開方.【詳解】A.0.3=B.,故B不是最簡二次根式;C是最簡二次根式;D.,故D不是最簡二次根式,故選:C.【點睛】本題考查最簡二次根式,是基礎考點,難度較易,掌握相關知識是解題關鍵.4、A【解析】【分析】根據(jù)無理數(shù)的定義,“無限不循環(huán)的小數(shù)是無理數(shù)”逐個分析判斷即可.【詳解】解:A.﹣是無理數(shù),符合題意,
B.﹣1是有理數(shù),不符合題意,
C.﹣是有理數(shù),不符合題意,D.0是有理數(shù),不符合題意,故選A【點睛】本題考查了無理數(shù),解答本題的關鍵掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有的數(shù).5、B【解析】【分析】根據(jù)折疊的性質(zhì)可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,從而求出BE,設CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列式計算即可得解.【詳解】解:由折疊的性質(zhì)可得,AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10,∴BE=AB-AE=10-6=4,設CD=DE=x,則DB=BC-CD=8-x,在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,解得x=3,即CD=3cm,故選:B.【點睛】本題考查了翻折變換的性質(zhì),以及勾股定理,熟記性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關鍵.6、B【解析】【分析】根據(jù)旋轉和三角板的特點即可得出,,從而可求出的大小,再結合的大小即可求出的值.【詳解】如圖,根據(jù)三角板的特點和旋轉的性質(zhì),可知,,∴,∴.故選B.【點睛】本題考查旋轉的性質(zhì)以及三角板的特點.利用數(shù)形結合的思想是解答本題的關鍵.7、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:B.【點睛】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關鍵.8、D【解析】【分析】根據(jù)圖中所給出的數(shù),找出組成三角形的三邊,并判斷較小兩邊的平方和是否等于最大邊的平方,每一個圖判斷兩次即可.【詳解】解:∵72=49,242=576,202=400,152=225,252=625,∴72+242=252,152+202≠242,152+202=252,∴A錯誤,B錯誤,C錯誤,D正確.故選:D.【點睛】本題考查了勾股定理的逆定理,解題的關鍵是注意是判斷較小兩邊的平方和是否等于最大邊的平方.二、填空題1、2【解析】【分析】過點C作CF⊥CE交BE于F,設AC交BE于J,根據(jù)點D是AB中點,DE=AD,可證∠AEB=90°,從而可證△CAE≌△CBF(ASA),即得CE=CF,AE=BF,由∠ECF=90°,得EF=CE=2-2,設AE=BF=x,則BE=x+2-2,在Rt△AEB中,BE=AE,有x+2-2=x,即可解得答案.【詳解】解:過點C作CF⊥CE交BE于F,設AC交BE于J,如圖:∵點D是AB中點,∴AD=DB,∵DE=AD,∴DE=DA=DB,∴∠DBE=∠DEB,∠DEA=∠DAE,∵∠ABE+∠AEB+∠BAE=180°,∴2∠DEA+2∠DEB=180°,∴∠DEA+∠DEB=90°,∴∠AEB=90°,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵∠AEJ=∠BCJ=90°,∠AJE=∠BJC,∴∠CAE=∠CBF,∵CB=CA,∴△CAE≌△CBF(ASA),∴CE=CF,AE=BF,∵∠ECF=90°,∴EF=CE=2-2,設AE=BF=x,則BE=x+2-2,在Rt△AEB中,∵∠ABE=30°,∠AEB=90°,∴AE=AB,由勾股定理得BE=AE,∴x+2-2=x,解得:x=2.故答案為:2.【點睛】本題考查了等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.2、10【解析】【分析】根據(jù)矩形的性質(zhì)得,,即,,即可得.【詳解】解:如圖,設點M為DE的中點,點N為FC的中點,連接MN交半圓于點P,此時PN取最小值,∵DE=4,四邊形DEFG為矩形,∴,,∴,∴,∴,故答案為:10.【點睛】本題考查了矩形的性質(zhì),三角形三條邊的關系,中線長定理,解題的關鍵是掌握中線長定理.3、5【解析】【分析】由勾股定理可求AO=BO=2,設點P(x,0),由勾股定理和兩點之間距離公式可求解.【詳解】解:∵AC=BC=,OC=1,∴AO=BO===2,設點P(x,0),則PA=x+2,PB=2﹣x,PC2=x2+1,∴PC2+PA?PB=x2+1+(x+2)(2﹣x)=5,故答案為:5.【點睛】本題考查了勾股定理,坐標與圖形性質(zhì),利用點的坐標表示線段的長是解題的關鍵.4、
【解析】【分析】先計算出的立方根,再根據(jù)平方根的定義進行求解;根據(jù)絕對值的定義進行求解.【詳解】解:①,的平方根是,的平方根是;②的絕對值是.故答案為:;.【點睛】本題了平方根和絕對值和立方根,理解平方根和絕對值的定義是解答關鍵.正數(shù)的平方根有兩個,它們互為相反數(shù),負數(shù)的絕對值是正數(shù).5、4【解析】【分析】根據(jù)絕對值的性質(zhì)和零指數(shù)冪化簡,即可求解.【詳解】解:.故答案為:4【點睛】本題主要考查了絕對值的性質(zhì)和零指數(shù)冪化簡,熟練掌握絕對值的性質(zhì)和零指數(shù)冪法則是解題的關鍵.6、-8【解析】【分析】根據(jù)勾股定理和坐標的性質(zhì),分別計算得、、,結合∠BAC=90°,根據(jù)勾股定理的性質(zhì)計算,即可得到答案.【詳解】根據(jù)題意,得:∵∠BAC=90°∴∴∴∴故答案為:-8.【點睛】本題考查了勾股定理、直角坐標系的知識;解題的關鍵是熟練掌握勾股定理的性質(zhì),從而完成求解.7、6【解析】【分析】應用負整數(shù)指數(shù)冪和開平方運算的法則即可求解.【詳解】解:==6故答案為:6【點睛】考查了負整數(shù)指數(shù)冪、算術平方根的運算法則,熟練掌握運算法則是正確解答的關鍵.三、解答題1、見解析【解析】【分析】根據(jù)正方形的性質(zhì)得到,,,再證明,,然后利用“”可判斷,從而得到結論.【詳解】證明:四邊形是正方形,,,,,,,,,,,,在和中,,,.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),解題的關鍵是掌握正方形的四條邊都相等,四個角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角.2、(1)①是;不是;②見解析(2)D(2,0)或(3,1)(3)<x<【解析】【分析】(1)①根據(jù)題意可得,,結合題中定義即可得出結果;②根據(jù)題意及題中“等距點”可得,由相應的“等距線段”最短時,過點O分別作,,此時“等距線段”最短,據(jù)此作圖即可得;(2)根據(jù)勾股定理及其逆定理可得是等腰直角三角形,,結合題意可得:,,結合圖形即可得出點的坐標;(3)分兩部分進行討論:①當時,點P為線段OC的中點;②當時,;結合題中“等距點”的定義及含角直角三角形的性質(zhì)依次分析即可得出點P橫坐標的取值范圍.(1)解:①∵點B(-2,0),C(2,0),A(0,a)(),∴,,∴點B,C是關于點O的“等距點”,線段OA,OB不是關于點O的“等距線段”;故答案為:是;不是;②∵關于點O的兩個“等距點”,分別在邊AB,AC上,∴,當相應的“等距線段”最短時,過點O分別作,,此時“等距線段”最短,如圖所示:(2)解:如圖所示,∵C(4,0),A(2,2),∴,∵,∴是等腰直角三角形,∴,∵P(3,0),∴,∴∴,∴D(2,0)或(3,1);(3)解:①當時,點P為線段OC的中點,∴,∴點O、C是關于點P的“等距點”,過點P作于點B,截取,連接PD,如圖所示:則,∵,∴,∴的關于點P的“等距點”有兩個在OC上,有一個在AC上,∵關于點P的“等距點”恰好有四個,且其中一個是點O,∴,即;②當時,,,則的關于點P的“等距點”有兩個在OC上,有一個在AC上,∵關于點P的“等距點”恰好有四個,且其中一個是點O,,即;綜上可得:,∴點P橫坐標的取值范圍為:.【點睛】題目主要考查坐標系中兩點間的距離,直線外一點到直線的垂線段最短,勾股定理,等腰三角形的判定和性質(zhì),含角直角三角形的性質(zhì)等,理解題意,作出相應輔助線是解題關鍵.3、【解析】【分析】先進行二次根式的化簡、去絕對值、計算零指數(shù)冪、負整數(shù)指數(shù)冪,然后進行加減運算即可.【詳解】解:原式.【點睛】本題考查了絕對值,二次根式的化簡,零指數(shù)冪,負整數(shù)指數(shù)冪.解題的關鍵在于正確的計算.4、(1)作圖見詳解;(2)3.【解析】【分析】(1)根據(jù)要求先作BC的垂直平分線,再作出∠B的角平分線,交點即為O點;(2)過點O作OH⊥AB于點H.利用勾股定理求出MN,證明OH=ON,利用面積法求解即可.(1)解:如圖,直線MN,點O即為所求;(2)過點O作OH⊥AB于點H.∵BO平分∠ABC,ON⊥BC,OH⊥AB,∴ON=OH,∵MN垂直平分線段BC,∴BN=CN=6,∵BM=10,∴MN===8,∵S△BMN=S△BMO+S△BON,∴×6×8=×10×OH+×6×ON,∴ON=OH=3.【點睛】本題考查作圖-復雜作圖,線段的垂直平分線的性質(zhì),角平分線的定義等知識,解題的關鍵是理解題意,學會用面積法解決問題.5、(1),,見解析(2)5千克(3)15千克【解析】【分析】(1)根據(jù)題意,可以寫出兩種付費方式所需的郵遞費用y(元)與x(千克)之間的函數(shù)關系式,并在直角坐標系中畫出圖象;(2)根據(jù)題意和(1)中的函數(shù)解析式,令它們的函數(shù)值相等,求出相應的x的值即可;(3)根據(jù)題意,可以列出相應的方程,然后求解即可.(1)由題意可得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 6495.7-2025光伏器件第7部分:光伏器件測量的光譜失配修正計算方法
- 貨運車輛黑名單制度
- 財務會計準則制度
- 落實備案審查年度工作報告制度
- 2026福建南平市建陽區(qū)文化體育和旅游局招聘1人參考考試試題附答案解析
- 2026黑龍江雙鴨山公益性崗位招聘176人參考考試試題附答案解析
- 上海市執(zhí)法類公務員招錄體能測評健康承諾書備考考試題庫附答案解析
- 2026上半年云南事業(yè)單位聯(lián)考能源職業(yè)技術學院招聘21人參考考試題庫附答案解析
- 2026四川廣安市廣安區(qū)白市鎮(zhèn)人民政府選用片區(qū)紀檢監(jiān)督員1人備考考試題庫附答案解析
- 2026年云南師范大學基礎教育集團人才招聘(若干)參考考試題庫附答案解析
- 2025年國家能源局系統(tǒng)公務員面試模擬題及備考指南
- 脊柱感染護理
- 2025年安徽省中考化學真題及答案
- 危險品押運證考試題及答案
- 2025年黨建工作應試題庫及答案
- 痤瘡皮膚護理常規(guī)
- 2025-2030中國自動分板設備自動PCB分板設備行業(yè)運行態(tài)勢與投資前景預測報告
- 2025年陜西省中考英語試卷(含解析)
- 2025至2030中國海綿新材料行業(yè)市場發(fā)展現(xiàn)狀及商業(yè)模式與投資發(fā)展報告
- 《三級醫(yī)院評審標準(2025年版)》
- 急診成人社區(qū)獲得性肺炎臨床實踐指南(2024 年版)解讀
評論
0/150
提交評論