數(shù)列高考真題及答案_第1頁(yè)
數(shù)列高考真題及答案_第2頁(yè)
數(shù)列高考真題及答案_第3頁(yè)
數(shù)列高考真題及答案_第4頁(yè)
數(shù)列高考真題及答案_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)列高考真題及答案

一、單項(xiàng)選擇題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和為\(S_{n}\),若\(a_{3}=5\),\(S_{9}=81\),則\(a_{7}=(\)\)A.\(18\)B.\(13\)C.\(9\)D.\(7\)答案:B2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=2\),\(a_{5}=16\),則公比\(q=(\)\)A.\(-2\)B.\(2\)C.\(\pm2\)D.\(4\)答案:B3.數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式\(a_{n}=2n-1\),則\(a_{1}\)與\(a_{5}\)的等比中項(xiàng)為\((\)\)A.\(9\)B.\(\pm9\)C.\(3\)D.\(\pm3\)答案:D4.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=a_{n}+2\),則\(a_{10}=(\)\)A.\(17\)B.\(18\)C.\(19\)D.\(20\)答案:C5.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{5}=10\),\(a_{4}=7\),則數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\((\)\)A.\(1\)B.\(2\)C.\(3\)D.\(4\)答案:B6.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和為\(S_{n}\),若\(S_{3}=1\),\(S_{6}=9\),則\(S_{9}=(\)\)A.\(27\)B.\(28\)C.\(29\)D.\(30\)答案:B7.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}\),則\(a_{8}=(\)\)A.\(15\)B.\(16\)C.\(49\)D.\(64\)答案:A8.在等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=450\),則\(a_{2}+a_{8}=(\)\)A.\(180\)B.\(270\)C.\(360\)D.\(540\)答案:A9.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{5}=4a_{3}\),則\(a_{n}=(\)\)A.\(2^{n-1}\)B.\((-2)^{n-1}\)C.\(2^{n-1}\)或\((-2)^{n-1}\)D.\(2^{n}\)答案:C10.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=2a_{n}\),且\(a_{1}=1\),則\(a_{6}=(\)\)A.\(32\)B.\(16\)C.\(8\)D.\(64\)答案:A二、多項(xiàng)選擇題1.下列關(guān)于等差數(shù)列的說(shuō)法正確的是()A.若\(\{a_{n}\}\)是等差數(shù)列,則\(a_{n}=kn+b\)(\(k,b\)為常數(shù))B.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}\)是關(guān)于\(n\)的二次函數(shù)C.若\(\{a_{n}\}\)是等差數(shù)列,\(m,n,p,q\inN^+\),且\(m+n=p+q\),則\(a_{m}+a_{n}=a_{p}+a_{q}\)D.等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差\(d\gt0\)時(shí),數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列答案:ACD2.設(shè)等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\),則下列說(shuō)法正確的是()A.若\(q\gt1\),則\(\{a_{n}\}\)是遞增數(shù)列B.若\(a_{1}\gt0\),\(0\ltq\lt1\),則\(\{a_{n}\}\)是遞減數(shù)列C.若\(a_{1}a_{9}=a_{5}^{2}\)D.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=\frac{a_{1}(1-q^{n})}{1-q}\)(\(q\neq1\))答案:BCD3.已知數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列,\(S_{n}\)為其前\(n\)項(xiàng)和,若\(a_{3}=6\),\(S_{5}=30\),則()A.首項(xiàng)\(a_{1}=2\)B.公差\(d=2\)C.\(a_{n}=2n\)D.\(S_{n}=n^{2}+n\)答案:ABCD4.對(duì)于數(shù)列\(zhòng)(\{a_{n}\}\),若\(a_{n+1}-a_{n}=d\)(\(d\)為常數(shù)),則下列說(shuō)法正確的是()A.數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列B.\(a_{n}=a_{1}+(n-1)d\)C.\(S_{n}=na_{1}+\frac{n(n-1)}{2}d\)D.若\(d\gt0\),則\(S_{n}\)單調(diào)遞增答案:ABC5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,已知\(a_{1}=1\),\(a_{4}=8\),則()A.公比\(q=2\)B.\(a_{n}=2^{n-1}\)C.\(S_{n}=2^{n}-1\)D.\(a_{2}\cdota_{3}=8\)答案:ABCD6.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差\(d\neq0\),\(a_{1}=1\),且\(a_{1},a_{3},a_{9}\)成等比數(shù)列,則()A.\(a_{n}=n\)B.\(S_{n}=\frac{n(n+1)}{2}\)C.數(shù)列\(zhòng)(\{\frac{1}{a_{n}a_{n+1}}\}\)的前\(n\)項(xiàng)和\(T_{n}=\frac{n}{n+1}\)D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}\)答案:ABC7.下列數(shù)列中,是等比數(shù)列的有()A.\(1,-1,1,-1,\cdots\)B.\(1,2,4,8,\cdots\)C.\(0,2,4,8,\cdots\)D.\(a,a,a,\cdots\)(\(a\neq0\))答案:ABD8.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{5}=10\),\(a_{12}=31\),則()A.\(a_{1}=-2\)B.\(d=3\)C.\(a_{n}=3n-5\)D.\(S_{n}=\frac{n(3n-7)}{2}\)答案:ABCD9.設(shè)等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和為\(S_{n}\),公比\(q=2\),\(S_{4}=15\),則()A.\(a_{1}=1\)B.\(a_{2}=2\)C.\(a_{3}=4\)D.\(S_{8}=255\)答案:ABCD10.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=2n\),\(a_{1}=1\),則()A.\(a_{n}=n^{2}-n+1\)B.\(a_{2}=3\)C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=\frac{n(n^{2}-n+3)}{3}\)D.\(a_{n+1}-a_{n}\)是等差數(shù)列答案:ABD三、判斷題1.若數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=n\),則\(\{a_{n}\}\)是等差數(shù)列。(×)2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}\lt0\),\(q\gt1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。(×)3.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}\)一定是關(guān)于\(n\)的二次函數(shù)。(×)4.若\(\{a_{n}\}\)是等比數(shù)列,\(a_{1}=1\),\(a_{3}=4\),則\(a_{5}=16\)。(√)5.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}+1\),則\(a_{n}=2n-1\)。(×)6.等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比\(q\)可以為\(0\)。(×)7.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}+a_{7}=10\),則\(a_{4}=5\)。(√)8.若數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=2a_{n}\),則\(\{a_{n}\}\)是等比數(shù)列。(×)9.等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差\(d\)決定了數(shù)列的單調(diào)性。(√)10.等比數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}\)滿足\(S_{n},S_{2n}-S_{n},S_{3n}-S_{2n}\)仍成等比數(shù)列。(×)四、簡(jiǎn)答題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=5\),\(a_{7}=13\),求數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式\(a_{n}\)。答案:首先求公差\(d\),\(d=\frac{a_{7}-a_{3}}{7-3}=\frac{13-5}{4}=2\)。然后由\(a_{n}=a_{m}+(n-m)d\),這里\(m=3\),則\(a_{n}=a_{3}+(n-3)d=5+2(n-3)=2n-1\)。所以數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式為\(a_{n}=2n-1\)。2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{4}=16\),求公比\(q\)和前\(n\)項(xiàng)和\(S_{n}\)。答案:由等比數(shù)列通項(xiàng)公式\(a_{n}=a_{1}q^{n-1}\),已知\(a_{1}=2\),\(a_{4}=16\),則\(a_{4}=a_{1}q^{3}\),即\(16=2q^{3}\),解得\(q=2\)。等比數(shù)列前\(n\)項(xiàng)和公式\(S_{n}=\frac{a_{1}(1-q^{n})}{1-q}\)(\(q\neq1\)),把\(a_{1}=2\),\(q=2\)代入得\(S_{n}=\frac{2(1-2^{n})}{1-2}=2^{n+1}-2\)。3.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和\(S_{n}=n^{2}-2n\),求數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式。答案:當(dāng)\(n=1\)時(shí),\(a_{1}=S_{1}=1^{2}-2\times1=-1\);當(dāng)\(n\geq2\)時(shí),\(a_{n}=S_{n}-S_{n-1}=n^{2}-2n-[(n-1)^{2}-2(n-1)]\),化簡(jiǎn)得\(a_{n}=n^{2}-2n-(n^{2}-2n+1-2n+2)=2n-3\)。當(dāng)\(n=1\)時(shí),\(2\times1-3=-1=a_{1}\),所以\(a_{n}=2n-3\)。4.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和為\(S_{n}\),已知\(a_{1}=1\),\(S_{3}=9\),求\(S_{n}\)的表達(dá)式。答案:設(shè)等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\),由\(S_{n}=na_{1}+\frac{n(n-1)}{2}d\),且\(S_{3}=9\),\(a_{1}=1\),可得\(S_{3}=3\times1+\frac{3\times(3-1)}{2}d=9\),即\(3+3d=9\),解得\(d=2\)。將\(a_{1}=1\),\(d=2\)代入\(S_{n}\)公式,得\(S_{n}=n\times1+\frac{n(n-1)}{2}\times2=n^{2}\)。五、討論題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)和等比數(shù)列\(zhòng)(\{b_{n}\}\),\(a_{1}=b_{1}=1\),\(a_{2}=b_{2}\),\(a_{4}=b_{3}\),討論數(shù)列\(zhòng)(\{a_{n}\}\)和\(\{b_{n}\}\)的通項(xiàng)公式

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論