蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題試題(比較難)_第1頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題試題(比較難)_第2頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題試題(比較難)_第3頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題試題(比較難)_第4頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題試題(比較難)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)資料專題試題(比較難)一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點(diǎn)G,點(diǎn)D在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重合),過點(diǎn)D作DE∥AC交AB于點(diǎn)E.(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請(qǐng)說明理由;(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),∠BDE的角平分線所在直線與射線AG交于點(diǎn)F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說明理由2.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.3.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關(guān)系嗎?請(qǐng)直接寫出你發(fā)現(xiàn)的結(jié)論.4.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.5.如圖,在中,與的角平分線交于點(diǎn).(1)若,則;(2)若,則;(3)若,與的角平分線交于點(diǎn),的平分線與的平分線交于點(diǎn),,的平分線與的平分線交于點(diǎn),則.6.(1)證明:兩條平行線被第三條直線所截,一對(duì)同旁內(nèi)角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點(diǎn)E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點(diǎn)O.求證:EO⊥FO.(3)如圖,AB∥CD,點(diǎn)E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點(diǎn)O,∠P=102°,求∠O的度數(shù).7.模型規(guī)律:如圖1,延長交于點(diǎn)D,則.因?yàn)榘妓倪呅涡嗡萍^,其四角具有“”這個(gè)規(guī)律,所以我們把這個(gè)模型叫做“箭頭四角形”.模型應(yīng)用(1)直接應(yīng)用:①如圖2,,則__________;②如圖3,__________;(2)拓展應(yīng)用:①如圖4,、的2等分線(即角平分線)、交于點(diǎn),已知,,則__________;②如圖5,、分別為、的10等分線.它們的交點(diǎn)從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線、交于點(diǎn)D,已知,則__________;④如圖7,、的角平分線、交于點(diǎn)D,則、、之同的數(shù)量關(guān)系為__________.8.直線與直線垂直相交于O,點(diǎn)A在射線上運(yùn)動(dòng),點(diǎn)B在射線上運(yùn)動(dòng).(1)如圖1,已知、分別是和角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值;(2)如圖2,延長至D,己知、的角平分線與的角平分線及其延長線相交于E、F.①求的度數(shù).②在中,如果有一個(gè)角是另一個(gè)角的3倍,試求的度數(shù).9.已如在四邊形中,.(1)如圖1,若,則________.(2)如圖2,若、分別平分、,判斷與位置關(guān)系并證明理由.(3)如圖3,若、分別五等分、(即,),則_______.10.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點(diǎn),直線l2分別交直線MN、GH于C、D兩點(diǎn),且直線l1、l2交于點(diǎn)E,點(diǎn)P是直線l2上不同于C、D、E點(diǎn)的動(dòng)點(diǎn).(1)如圖①,當(dāng)點(diǎn)P在線段CE上時(shí),請(qǐng)直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系:;(2)如圖②,當(dāng)點(diǎn)P在線段DE上時(shí),(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系還成立嗎?如果成立,請(qǐng)說明成立的理由;如果不成立,請(qǐng)寫出這三個(gè)角之間的數(shù)量關(guān)系,并說明理由.(3)如果點(diǎn)P在直線l2上且在C、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,請(qǐng)直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系.【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.2.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.3.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.4.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問題連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.5.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計(jì)算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點(diǎn)O是∠AB故答案為:110°;C與∠ACB的角平分線的交點(diǎn),∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點(diǎn)O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應(yīng)用,注意:三角形的內(nèi)角和等于180°.6.(1)直線MN分別交直線AB、CD于點(diǎn)E、F,∠AEF和∠CFE的角平分線OE、OF交于點(diǎn)O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證解析:(1)直線MN分別交直線AB、CD于點(diǎn)E、F,∠AEF和∠CFE的角平分線OE、OF交于點(diǎn)O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證明;(2)延長交于點(diǎn),過點(diǎn)作交于點(diǎn),結(jié)合(1)的方法即可證明;(3)延長、交于點(diǎn),過點(diǎn)作交于點(diǎn).結(jié)合(1)的方法可得,再根據(jù)角平分線定義即可求出結(jié)果.【詳解】(1)已知:如圖①,,直線分別交直線,于點(diǎn),,、分別平分、,求證:;證法,,、分別平分、,.,.;證法2:如圖,過點(diǎn)作交直線于點(diǎn).,,、分別平分、,.,,..;故答案為:直線分別交直線,于點(diǎn),,、分別平分、,;(2)證明:如圖,延長交于點(diǎn),過點(diǎn)作交于點(diǎn),,,,.、分別平分、,,,,..;(3)解:如圖,延長、交于點(diǎn),過點(diǎn)作交于點(diǎn).,,,由(1)證法2可知,、分別平分、,.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),角平分線的定義,解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).7.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計(jì)算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計(jì)算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入計(jì)算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入計(jì)算可得;②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入計(jì)算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)計(jì)算可得;④根據(jù)兩個(gè)凹四邊形ABOD和ABOC得到兩個(gè)等式,聯(lián)立可得結(jié)論.【詳解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-(∠ABO+∠ACO)=∠BOC-(∠BOC-∠A)=∠BOC-(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-(∠BOC-∠A)=120°-(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)=180°-(120°-44°)=142°;④∠BOD=∠BOC=∠B+∠D+∠BAC,∠BOC=∠B+∠C+∠BAC,聯(lián)立得:∠B-∠C+2∠D=0.【點(diǎn)睛】本題主要考查了新定義—箭頭四角形,利用了三角形外角的性質(zhì),還考查了角平分線的定義,圖形類規(guī)律,解題的關(guān)鍵是理解箭頭四角形,并能熟練運(yùn)用其性質(zhì).8.(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB解析:(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB,∠ABC=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)①由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAD的角平分線可知∠EAF=90°;②在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類討論.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AC、BC分別是∠BAO和∠ABO角的平分線,∴∠BAC=∠OAB,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠OAB+∠ABO)=×90°=45°,∴∠ACB=135°;(2)①∵AE、AF分別是∠BAO和∠OAD的角平分線,∴∠EAO=∠BAO,∠FAO=∠DAO,∴∠EAF=(∠BAO+∠DAO)=×180°=90°.故答案為:90;②∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,即∠ABO=2∠E,在△AEF中,∵有一個(gè)角是另一個(gè)角的3倍,故分四種情況討論:①∠EAF=3∠E,∠E=30°,則∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO為60°或45°.【點(diǎn)睛】本題考查的是三角形內(nèi)角和定理、三角形外角性質(zhì)以及角平分線的定義的運(yùn)用,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.9.(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計(jì)算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF解析:(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計(jì)算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF+∠CDE=90°,從而推出∠EDB+∠FBD=180°,可得結(jié)論;(3)根據(jù)五等分得到∠CDP+∠CBP=36°,連接PC并延長,證明∠DCB=∠DPB+∠CBP+∠CDP,即可計(jì)算.【詳解】解:(1)∵∠A=∠C=90°,∠ABC=70°,∴∠ADC=360°-90°-90°-70°=110°,∴∠NDC=180°-110°=70°;(2)DE∥BF,如圖,連接BD,∵∠ABC+∠ADC=180°,且∠MBC+∠ABC=180°,∠CDN+∠ADC=180°,∴∠MBC+∠CDN=180°,∵∠CBF=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論