解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》必考點(diǎn)解析試題(含詳解)_第1頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》必考點(diǎn)解析試題(含詳解)_第2頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》必考點(diǎn)解析試題(含詳解)_第3頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》必考點(diǎn)解析試題(含詳解)_第4頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》必考點(diǎn)解析試題(含詳解)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》必考點(diǎn)解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結(jié)論有(

)個A.2 B.3 C.4 D.52、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,可知的度數(shù)為()A. B. C. D.3、如圖,已知在四邊形中,,平分,,,,則四邊形的面積是(

)A.24 B.30 C.36 D.424、下列各組中的兩個圖形屬于全等圖形的是(

)A. B.C. D.5、如圖,若,則的理由是(

)A.SAS B.AAS C.ASA D.HL第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,若△ABC≌△ADE,且∠1=35°,則∠2=_____.2、如圖,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,點(diǎn)P為BC邊上一動點(diǎn),當(dāng)BP=________時,形成的Rt△ABP與Rt△PCD全等.3、如圖,在△ABC中,AD⊥BC于點(diǎn)D,過A作AEBC,且AE=AB,AB上有一點(diǎn)F,連接EF.若EF=AC,CD=4BD,則=_____.4、如圖,在△ABC中,,AC=8cm,BC=10cm.點(diǎn)C在直線l上,動點(diǎn)P從A點(diǎn)出發(fā)沿A→C的路徑向終點(diǎn)C運(yùn)動;動點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)A運(yùn)動.點(diǎn)P和點(diǎn)Q分別以每秒1cm和2cm的運(yùn)動速度同時開始運(yùn)動,其中一點(diǎn)到達(dá)終點(diǎn)時另一點(diǎn)也停止運(yùn)動,分別過點(diǎn)P和Q作PM⊥直線l于M,QN⊥直線l于N.則點(diǎn)P運(yùn)動時間為____秒時,△PMC與△QNC全等.5、如圖,已知,,,則等于________.三、解答題(5小題,每小題10分,共計(jì)50分)1、在△ABC中,∠ACB=90°,AC=BC,且AD⊥MN于D,BE⊥MN于E.(1)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(1)的位置時,求證:DE=AD+BE;(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系(不寫證明過程);(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(3)的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系(不寫證明過程).2、如圖,已知線段a、b和,用尺規(guī)作一個三角形,使.(要求:不寫已知、求作、作法、只畫圖,保留作圖痕跡)3、如圖,沿AC方向開山修路,為了加快施工進(jìn)度,要在山的另一邊同時施工,工人師傅在AC上取一點(diǎn)B,在小山外取一點(diǎn)D,連接BD,并延長使DF=BD,過F點(diǎn)作AB的平行線段MF,連接MD,并延長,在其延長線上取一點(diǎn)E,使DE=DM,在E點(diǎn)開工就能使A、C、E成一條直線,請說明其中的道理;4、如圖,,,垂足分別為與相交于點(diǎn),.(1)求證:;(2)在不添加任何輔助線的情況下,請直接寫出圖中四對全等的三角形..5、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點(diǎn)D在直線BC上.(1)如圖1,當(dāng)點(diǎn)D在CB延長線上時,求證:BE⊥CD;(2)如圖2,當(dāng)D點(diǎn)不在直線BC上時,BE、CD相交于M,①直接寫出∠CME的度數(shù);②求證:MA平分∠CME-參考答案-一、單選題1、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯誤.利用反證法,假設(shè)成立,推出矛盾即可.④錯誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個顯然與條件矛盾,故③錯誤故選B.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.2、C【解析】【分析】利用等腰三角形的性質(zhì)和基本作圖得到,則平分,利用和三角形內(nèi)角和計(jì)算出,從而得到的度數(shù).【詳解】由作法得,∵,∴平分,,∵,∴.故選C.【考點(diǎn)】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點(diǎn)作已知直線的垂線).也考查了等腰三角形的性質(zhì).3、B【解析】【分析】過D作DE⊥AB交BA的延長線于E,根據(jù)角平分線的性質(zhì)得到DE=CD=4,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】如圖,過D作DE⊥AB交BA的延長線于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四邊形的面積故選B.【考點(diǎn)】本題考查了角平分線的性質(zhì),三角形的面積的計(jì)算,正確的作出輔助線是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項(xiàng),即可.【詳解】A.兩個圖形不能完全重合,不是全等圖形,不符合題意,B.兩個圖形能完全重合,是全等圖形,符合題意,C.兩個圖形不能完全重合,不是全等圖形,不符合題意,D.兩個圖形不能完全重合,不是全等圖形,不符合題意,故選B【考點(diǎn)】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個圖形,是全等圖形”是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.二、填空題1、35°.【解析】【分析】根據(jù)全等的性質(zhì)可得:∠EAD=∠CAB,再根據(jù)等式的基本性質(zhì)可得∠1=∠2=35°.【詳解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案為35°.【考點(diǎn)】此題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解決此題的關(guān)鍵.2、2【解析】【分析】當(dāng)BP=2時,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,進(jìn)而可得AB=CP,BP=CD,再結(jié)合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【詳解】當(dāng)BP=2時,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=2,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案為:2.【考點(diǎn)】本題考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解題的關(guān)鍵.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角相等時,角必須是兩邊的夾角.3、【解析】【分析】在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點(diǎn)H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點(diǎn)H,∵AD⊥BC于點(diǎn)D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點(diǎn)】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.4、2或6或6或2【解析】【分析】設(shè)點(diǎn)P運(yùn)動時間為t秒,根據(jù)題意化成兩種情況,由全等三角形的性質(zhì)得出,列出關(guān)于t的方程,求解即可.【詳解】解:設(shè)運(yùn)動時間為t秒時,△PMC≌△CNQ,∴斜邊,分兩種情況:①如圖1,點(diǎn)P在AC上,點(diǎn)Q在BC上,圖1∵,,∴,,∵,∴,∴;②如圖2,點(diǎn)P、Q都在AC上,此時點(diǎn)P、Q重合,圖2∵,,∴,∴;綜上所述,點(diǎn)P運(yùn)動時間為2或6秒時,△PMC與△QNC全等,故答案為:2或6.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,根據(jù)題意判斷兩三角形全等的條件是解題關(guān)鍵,同時要注意分情況討論,解題時避免遺漏答案.5、【解析】【分析】根據(jù)提示可找到一組公共邊OP,從而根據(jù)SSS判定△POB≌△POA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】在和中,∵,,,,故答案為40°.【考點(diǎn)】本題考查了全等三角形的判定及性質(zhì),熟練掌握基本的性質(zhì)和判定是正確解題的關(guān)鍵.三、解答題1、(1)證明見詳解(2)DE+BE=AD.理由見詳解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由見詳解.【解析】【分析】(1)根據(jù)題意由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根據(jù)AAS可以證明△ADC≌△CEB,結(jié)合全等三角形的對應(yīng)邊相等證得結(jié)論;(2)由題意根據(jù)全等三角形的判定定理AAS推知△ACD≌△CBE,然后由全等三角形的對應(yīng)邊相等、圖形中線段間的和差關(guān)系以及等量代換證得DE+BE=AD;(3)由題意可知DE、AD、BE具有的等量關(guān)系為:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).證明的方法與(2)相同.(1)證明:如圖1,∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵,∴△ADC≌△CEB;∴DC=BE,AD=EC,∵DE=DC+EC,∴DE=BE+AD.(2)解:DE+BE=AD.理由如下:如圖2,∵∠ACB=90°,∴∠ACD+∠BCE=90°.又∵AD⊥MN于點(diǎn)D,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE.在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE,∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.(3)解:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由如下:如圖3,易證得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD-CE=BE-AD,即DE=BE-AD.【考點(diǎn)】本題屬于幾何變換綜合題,考查等腰直角三角形和全等三角形的性質(zhì)和判定,熟練掌握全等三角形的四種判定方法是關(guān)鍵:SSS、SAS、AAS、ASA;在證明線段的和與差時,利用全等三角形將線段轉(zhuǎn)化到同一條直線上得出結(jié)論.2、見解析【解析】【分析】先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點(diǎn),即可.【詳解】解:先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點(diǎn),連接,即為所求,如圖所示:【考點(diǎn)】本題考查了復(fù)雜作圖,利用了作一個角等于已知角,作線段等于已知線段,是基本作圖,需熟練掌握.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.3、詳見解析.【解析】【詳解】試題分析:首先根據(jù)題意得出△BDE和△FDM全等,從而得出∠BEM=∠DMF,即BE∥MF,最后根據(jù)過直線外一點(diǎn)有且只有一條直線與已知直線平行得出答案.試題解析:∵BD=DF,DE=DM,∠BDE=∠FDM,∴△BDE≌△FDM,∴∠BEM=∠DMF,∴BE∥MF,∵AB∥MF,根據(jù)過直線外一點(diǎn)有且只有一條直線與已知直線平行,∴A、C、E在一條直線上.4、(1)見解析;(2),,,【解析】【分析】(1)根據(jù)垂直的定義得出∠BDF=∠CEF=90°,根據(jù)AAS可以推出△BDF≌△CEF,根據(jù)全等三角形的性質(zhì)得出即可;(2)根據(jù)全等三角形的性質(zhì)得出∠B=∠C,BD=CE,DF=EF,求出AB=AC,再根據(jù)全等三角形的判定定理推出△ADF≌△AEF,△ABF≌△ACF,△ACD≌△ABE.【詳解】證明:,在和中(AAS)

⑵,,,理由是:由(1)知:△BFD≌△CFE,所以DF=EF,∠B=∠C,BD=CE,根據(jù)HL可以推出△ADF≌△AEF,所以AD=AE,∵BD=CE,∴AB=AC,根據(jù)SAS可以推出△ABF≌△ACF,根據(jù)HL可以推出△ACD≌△ABE.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論