2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)含答案_第1頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)含答案_第2頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)含答案_第3頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)含答案_第4頁(yè)
2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)含答案_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)含答案一、解答題1.如圖所示的正方形紙板是由兩張大小相同的長(zhǎng)方形紙板拼接而成的,已知一個(gè)長(zhǎng)方形紙板的面積為162平方厘米,求正方形紙板的邊長(zhǎng).2.動(dòng)手試一試,如圖1,紙上有10個(gè)邊長(zhǎng)為1的小正方形組成的圖形紙.我們可以按圖2的虛線將它剪開后,重新拼成一個(gè)大正方形.(1)基礎(chǔ)鞏固:拼成的大正方形的面積為______,邊長(zhǎng)為______;(2)知識(shí)運(yùn)用:如圖3所示,將圖2水平放置在數(shù)軸上,使得頂點(diǎn)B與數(shù)軸上的重合.以點(diǎn)B為圓心,邊為半徑畫圓弧,交數(shù)軸于點(diǎn)E,則點(diǎn)E表示的數(shù)是______;(3)變式拓展:①如圖4,給定的方格紙(每個(gè)小正方形邊長(zhǎng)為1),你能從中剪出一個(gè)面積為13的正方形嗎?若能,請(qǐng)?jiān)趫D中畫出示意圖;②請(qǐng)你利用①中圖形在數(shù)軸上用直尺和圓規(guī)表示面積為13的正方形邊長(zhǎng)所表示的數(shù).3.已知足球場(chǎng)的形狀是一個(gè)長(zhǎng)方形,而國(guó)際標(biāo)準(zhǔn)球場(chǎng)的長(zhǎng)度和寬度(單位:米)的取值范圍分別是,.若某球場(chǎng)的寬與長(zhǎng)的比是1:1.5,面積為7350平方米,請(qǐng)判斷該球場(chǎng)是否符合國(guó)際標(biāo)準(zhǔn)球場(chǎng)的長(zhǎng)寬標(biāo)準(zhǔn),并說(shuō)明理由.4.?dāng)?shù)學(xué)活動(dòng)課上,小新和小葵各自拿著不同的長(zhǎng)方形紙片在做數(shù)學(xué)問(wèn)題探究.(1)小新經(jīng)過(guò)測(cè)量和計(jì)算得到長(zhǎng)方形紙片的長(zhǎng)寬之比為3:2,面積為30,請(qǐng)求出該長(zhǎng)方形紙片的長(zhǎng)和寬;(2)小葵在長(zhǎng)方形內(nèi)畫出邊長(zhǎng)為a,b的兩個(gè)正方形(如圖所示),其中小正方形的一條邊在大正方形的一條邊上,她經(jīng)過(guò)測(cè)量和計(jì)算得到長(zhǎng)方形紙片的周長(zhǎng)為50,陰影部分兩個(gè)長(zhǎng)方形的周長(zhǎng)之和為30,由此她判斷大正方形的面積為100,間小葵的判斷正確嗎?請(qǐng)說(shuō)明理由.5.有一塊正方形鋼板,面積為16平方米.(1)求正方形鋼板的邊長(zhǎng).(2)李師傅準(zhǔn)備用它裁剪出一塊面積為12平方米的長(zhǎng)方形工件,且要求長(zhǎng)寬之比為,問(wèn)李師傅能辦到嗎?若能,求出長(zhǎng)方形的長(zhǎng)和寬;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,).二、解答題6.已知,AB∥CD,點(diǎn)E為射線FG上一點(diǎn).(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),此時(shí)CD與AE交于點(diǎn)H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請(qǐng)說(shuō)明你的結(jié)論;(3)如圖3,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).7.如圖,已知直線,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線交于點(diǎn).(1)若時(shí),則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動(dòng),其他條件不變,請(qǐng)畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)8.(1)(問(wèn)題)如圖1,若,,.求的度數(shù);(2)(問(wèn)題遷移)如圖2,,點(diǎn)在的上方,問(wèn),,之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).9.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過(guò)點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).10.點(diǎn)A,C,E在直線l上,點(diǎn)B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點(diǎn)E在線段AC上,求證:B+D=BED;(2)若點(diǎn)E不在線段AC上,試猜想并證明B,D,BED之間的等量關(guān)系;(3)在(1)的條件下,如圖2所示,過(guò)點(diǎn)B作PB//ED,在直線BP,ED之間有點(diǎn)M,使得ABE=EBM,CDE=EDM,同時(shí)點(diǎn)F使得ABE=nEBF,CDE=nEDF,其中n≥1,設(shè)BMD=m,利用(1)中的結(jié)論求BFD的度數(shù)(用含m,n的代數(shù)式表示).三、解答題11.如圖1,點(diǎn)O在上,,射線交于點(diǎn)C,已知m,n滿足:.(1)試說(shuō)明//的理由;(2)如圖2,平分,平分,直線、交于點(diǎn)E,則______;(3)若將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過(guò)程中,的度數(shù)是否發(fā)生變化?請(qǐng)說(shuō)明你的結(jié)論.12.將兩塊三角板按如圖置,其中三角板邊,,,.(1)下列結(jié)論:正確的是_______.①如果,則有;②;③如果,則平分.(2)如果,判斷與是否相等,請(qǐng)說(shuō)明理由.(3)將三角板繞點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),直到邊與重合即停止,轉(zhuǎn)動(dòng)的過(guò)程中當(dāng)兩塊三角板恰有兩邊平行時(shí),請(qǐng)直接寫出所有可能的度數(shù).13.已知直線,M,N分別為直線,上的兩點(diǎn)且,P為直線上的一個(gè)動(dòng)點(diǎn).類似于平面鏡成像,點(diǎn)N關(guān)于鏡面所成的鏡像為點(diǎn)Q,此時(shí).(1)當(dāng)點(diǎn)P在N右側(cè)時(shí):①若鏡像Q點(diǎn)剛好落在直線上(如圖1),判斷直線與直線的位置關(guān)系,并說(shuō)明理由;②若鏡像Q點(diǎn)落在直線與之間(如圖2),直接寫出與之間的數(shù)量關(guān)系;(2)若鏡像,求的度數(shù).14.已知點(diǎn)A,B,O在一條直線上,以點(diǎn)O為端點(diǎn)在直線AB的同一側(cè)作射線,,使.(1)如圖①,若平分,求的度數(shù);(2)如圖②,將繞點(diǎn)O按逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置時(shí),使得所在射線把分成兩個(gè)角.①若,求的度數(shù);②若(n為正整數(shù)),直接用含n的代數(shù)式表示.15.如圖1,在平面直角坐標(biāo)系中,,且滿足,過(guò)作軸于(1)求三角形的面積.(2)發(fā)過(guò)作交軸于,且分別平分,如圖2,若,求的度數(shù).(3)在軸上是否存在點(diǎn),使得三角形和三角形的面積相等?若存在,求出點(diǎn)坐標(biāo);若不存在;請(qǐng)說(shuō)明理由.四、解答題16.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來(lái)表示,你能找到與和之間的關(guān)系嗎?請(qǐng)直接寫出你發(fā)現(xiàn)的結(jié)論.17.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)18.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點(diǎn)落在內(nèi)的點(diǎn)處.(1)若,________.(2)如圖①,若各個(gè)角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.②當(dāng)點(diǎn)落在四邊形外部時(shí)(如圖②),(1)中的猜想是否仍然成立?若成立,請(qǐng)說(shuō)明理由,若不成立,,,之間又存在什么關(guān)系?請(qǐng)說(shuō)明.(3)應(yīng)用:如圖③:把一個(gè)三角形的三個(gè)角向內(nèi)折疊之后,且三個(gè)頂點(diǎn)不重合,那么圖中的和是________.19.已知在中,,點(diǎn)在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點(diǎn)在上時(shí),求度數(shù);(3)將在直線上平移,當(dāng)以為頂點(diǎn)的三角形是直角三角形時(shí),直接寫出度數(shù).20.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫出比值.【參考答案】一、解答題1.正方形紙板的邊長(zhǎng)是18厘米【分析】根據(jù)正方形的面積公式進(jìn)行解答.【詳解】解:設(shè)小長(zhǎng)方形的寬為x厘米,則小長(zhǎng)方形的長(zhǎng)為厘米,即得正方形紙板的邊長(zhǎng)是厘米,根據(jù)題意得:,∴,取正值,可得,解析:正方形紙板的邊長(zhǎng)是18厘米【分析】根據(jù)正方形的面積公式進(jìn)行解答.【詳解】解:設(shè)小長(zhǎng)方形的寬為x厘米,則小長(zhǎng)方形的長(zhǎng)為厘米,即得正方形紙板的邊長(zhǎng)是厘米,根據(jù)題意得:,∴,取正值,可得,∴答:正方形紙板的邊長(zhǎng)是18厘米.【點(diǎn)評(píng)】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,解題的關(guān)鍵是熟悉正方形的面積公式.2.(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長(zhǎng);(2)根據(jù)大正方形的邊長(zhǎng)結(jié)合實(shí)解析:(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長(zhǎng);(2)根據(jù)大正方形的邊長(zhǎng)結(jié)合實(shí)數(shù)與數(shù)軸的關(guān)系可得結(jié)果;(3)以2×3的長(zhǎng)方形的對(duì)角線為邊長(zhǎng)即可畫出圖形;(4)得到①中正方形的邊長(zhǎng),再利用實(shí)數(shù)與數(shù)軸的關(guān)系可畫出圖形.【詳解】解:(1)∵圖1中有10個(gè)小正方形,∴面積為10,邊長(zhǎng)AD為;(2)∵BC=,點(diǎn)B表示的數(shù)為-1,∴BE=,∴點(diǎn)E表示的數(shù)為;(3)①如圖所示:②∵正方形面積為13,∴邊長(zhǎng)為,如圖,點(diǎn)E表示面積為13的正方形邊長(zhǎng).【點(diǎn)睛】本題考查了圖形的剪拼,正方形的面積,算術(shù)平方根,實(shí)數(shù)與數(shù)軸,巧妙地根據(jù)網(wǎng)格的特點(diǎn)畫出正方形是解此題的關(guān)鍵.3.符合,理由見解析【分析】根據(jù)寬與長(zhǎng)的比是1:1.5,面積為7350平方米,列方程求出長(zhǎng)和寬,比較得出答案.【詳解】解:符合,理由如下:設(shè)寬為b米,則長(zhǎng)為1.5b米,由題意得,1.5b×b解析:符合,理由見解析【分析】根據(jù)寬與長(zhǎng)的比是1:1.5,面積為7350平方米,列方程求出長(zhǎng)和寬,比較得出答案.【詳解】解:符合,理由如下:設(shè)寬為b米,則長(zhǎng)為1.5b米,由題意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即寬為70米,長(zhǎng)為1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合國(guó)際標(biāo)準(zhǔn)球場(chǎng)的長(zhǎng)寬標(biāo)準(zhǔn).【點(diǎn)睛】本題考查算術(shù)平方根的意義,列出方程求出長(zhǎng)和寬是得出正確答案的前提.4.(1)長(zhǎng)為,寬為;(2)正確,理由見解析【分析】(1)設(shè)長(zhǎng)為3x,寬為2x,根據(jù)長(zhǎng)方形的面積為30列方程,解方程即可;(2)根據(jù)長(zhǎng)方形紙片的周長(zhǎng)為50,陰影部分兩個(gè)長(zhǎng)方形的周長(zhǎng)之和為30列方程解析:(1)長(zhǎng)為,寬為;(2)正確,理由見解析【分析】(1)設(shè)長(zhǎng)為3x,寬為2x,根據(jù)長(zhǎng)方形的面積為30列方程,解方程即可;(2)根據(jù)長(zhǎng)方形紙片的周長(zhǎng)為50,陰影部分兩個(gè)長(zhǎng)方形的周長(zhǎng)之和為30列方程組,解方程組求出a即可得到大正方形的面積.【詳解】解:(1)設(shè)長(zhǎng)為3x,寬為2x,則:3x?2x=30,∴x=(負(fù)值舍去),∴3x=,2x=,答:這個(gè)長(zhǎng)方形紙片的長(zhǎng)為,寬為;(2)正確.理由如下:根據(jù)題意得:,解得:,∴大正方形的面積為102=100.【點(diǎn)睛】本題考查了算術(shù)平方根,二元一次方程組,解二元一次方程組的基本思路是消元,把二元方程轉(zhuǎn)化為一元方程是解題的關(guān)鍵.5.(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬與正方形邊長(zhǎng)的大小可得結(jié)論.【詳解】解解析:(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬與正方形邊長(zhǎng)的大小可得結(jié)論.【詳解】解:(1)正方形的面積是16平方米,正方形鋼板的邊長(zhǎng)是米;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,則,,,,,長(zhǎng)方形長(zhǎng)是米,而正方形的邊長(zhǎng)為4米,所以李師傅不能辦到.【點(diǎn)睛】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,靈活的利用算術(shù)平方根表示正方形和長(zhǎng)方形的邊長(zhǎng)是解題的關(guān)鍵.二、解答題6.(1)70°;(2),證明見解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線解析:(1)70°;(2),證明見解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過(guò)三角形內(nèi)角和求.【詳解】解:(1)過(guò)作,,,,,,故答案為:;(2).理由如下:過(guò)作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問(wèn)題的關(guān)鍵.7.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過(guò)點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過(guò)點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過(guò)點(diǎn)E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計(jì)算即可.【詳解】解:(1)當(dāng)n=20時(shí),∠ABC=40°,過(guò)E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點(diǎn)B在點(diǎn)A左側(cè)時(shí),由(2)可知:∠BED=n°+40°;當(dāng)點(diǎn)B在點(diǎn)A右側(cè)時(shí),如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),以及角平分線的定義,正確應(yīng)用平行線的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.8.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過(guò)P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PF解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過(guò)P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過(guò)點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過(guò)P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.9.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過(guò)點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過(guò)點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過(guò)點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.10.(1)見解析;(2)當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),∠BED=∠D-∠B;當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過(guò)點(diǎn)E作ET∥AB.利用平行解析:(1)見解析;(2)當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),∠BED=∠D-∠B;當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過(guò)點(diǎn)E作ET∥AB.利用平行線的性質(zhì)解決問(wèn)題.(2)分兩種情形:如圖2-1中,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),如圖2-2中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),構(gòu)造平行線,利用平行線的性質(zhì)求解即可.(3)利用(1)中結(jié)論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問(wèn)題即可.【詳解】解:(1)證明:如圖1中,過(guò)點(diǎn)E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當(dāng)點(diǎn)E在CA的延長(zhǎng)線上時(shí),過(guò)點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),過(guò)點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設(shè)∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平行線的性質(zhì),角平分線的定義等知識(shí),解題的關(guān)鍵是學(xué)會(huì)條件常用輔助線,構(gòu)造平行線解決問(wèn)題,屬于中考??碱}型.三、解答題11.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時(shí),∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時(shí),OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時(shí),如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點(diǎn)睛】本題主要考查了角平分線的定義,平行線的判定與性質(zhì),角的和差關(guān)系,注意分類討論,引入適當(dāng)?shù)牧勘阌谶\(yùn)算簡(jiǎn)便.12.(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷解析:(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷;(3)依據(jù)這兩塊三角尺各有一條邊互相平行,分五種情況討論,即可得到∠EAB角度所有可能的值.【詳解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①錯(cuò)誤;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正確;③若BC∥AD,則∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正確;故答案為:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,則∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,則∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,則∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,則∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE∥BC,則∠C=∠CAE=45°,∴∠EAB=45°+90°=135°;綜上:∠EAB的度數(shù)可能為30°或45°或75°或120°或135°.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),角平分線的定義,解題的關(guān)鍵是理解題意,分情況畫出圖形,學(xué)會(huì)用分類討論的思想思考問(wèn)題.13.(1)①,證明見解析,②,(2)或.【分析】(1)①根據(jù)和鏡像證出,即可判斷直線與直線的位置關(guān)系,②過(guò)點(diǎn)Q作QF∥CD,根據(jù)平行線的性質(zhì)證即可;(2)過(guò)點(diǎn)Q作QF∥CD,根據(jù)點(diǎn)P的位置不同,解析:(1)①,證明見解析,②,(2)或.【分析】(1)①根據(jù)和鏡像證出,即可判斷直線與直線的位置關(guān)系,②過(guò)點(diǎn)Q作QF∥CD,根據(jù)平行線的性質(zhì)證即可;(2)過(guò)點(diǎn)Q作QF∥CD,根據(jù)點(diǎn)P的位置不同,分類討論,依據(jù)平行線的性質(zhì)求解即可.【詳解】(1)①,證明:∵,∴,∵,∴,∴;②過(guò)點(diǎn)Q作QF∥CD,∵,∴,∴,,∴,∵,∴;(2)如圖,當(dāng)點(diǎn)P在N右側(cè)時(shí),過(guò)點(diǎn)Q作QF∥CD,同(1)得,,∴,,∵,∴,∴,∵,∴,∴,如圖,當(dāng)點(diǎn)P在N左側(cè)時(shí),過(guò)點(diǎn)Q作QF∥CD,同(1)得,,同理可得,,∵,∴,∴,∵,∴,∴;綜上,的度數(shù)為或.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,解題關(guān)鍵是恰當(dāng)?shù)淖鬏o助線,熟練利用平行線的性質(zhì)推導(dǎo)角之間的關(guān)系.14.(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最解析:(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論;②根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論.【詳解】解:(1)∵平分,,∴,∴,∴,∴;(2)①∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴;②∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴.【點(diǎn)睛】本題考查鄰補(bǔ)角的計(jì)算,角的和差,角平分線的有關(guān)計(jì)算.能正確識(shí)圖,利用角的和差求得相應(yīng)角的度數(shù)是解題關(guān)鍵.15.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計(jì)算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計(jì)算出三角形ABC的面積=4;(2)由于CB∥y軸,BD∥AC,則∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,過(guò)E作EF∥AC,則BD∥AC∥EF,然后利用角平分線的定義可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根據(jù)待定系數(shù)法確定直線AC的解析式為y=x+1,則G點(diǎn)坐標(biāo)為(0,1),然后利用S△PAC=S△APG+S△CPG進(jìn)行計(jì)算.【詳解】解:(1)由題意知:a=?b,a?b+4=0,解得:a=?2,b=2,∴A(?2,0),B(2,0),C(2,2),∴S△ABC=;(2)∵CB∥y軸,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,過(guò)E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分別平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:設(shè)P點(diǎn)坐標(biāo)為(0,t),直線AC的解析式為y=kx+b,把A(?2,0)、C(2,2)代入得:,解得,∴直線AC的解析式為y=x+1,∴G點(diǎn)坐標(biāo)為(0,1),∴S△PAC=S△APG+S△CPG=|t?1|?2+|t?1|?2=4,解得t=3或?1,∴P點(diǎn)坐標(biāo)為(0,3)或(0,?1).【點(diǎn)睛】本題考查了絕對(duì)值、平方的非負(fù)性,平行線的判定與性質(zhì):內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等.四、解答題16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問(wèn)利用即可得出答案,第4問(wèn)利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.17.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過(guò)E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H點(diǎn)作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過(guò)點(diǎn)O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點(diǎn)睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過(guò)拐點(diǎn)作平行線是解題的關(guān)鍵,準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系也很重要.18.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個(gè)平角∠AEB和∠ADC得:∠1+∠2等于360°與四個(gè)折疊角的差,化簡(jiǎn)得結(jié)果;②利用兩次外角定理得出結(jié)論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內(nèi)角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內(nèi)角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=5

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論