基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)上冊《全等三角形》同步測試練習(xí)題(解析版)_第1頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)上冊《全等三角形》同步測試練習(xí)題(解析版)_第2頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)上冊《全等三角形》同步測試練習(xí)題(解析版)_第3頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)上冊《全等三角形》同步測試練習(xí)題(解析版)_第4頁
基礎(chǔ)強(qiáng)化人教版8年級數(shù)學(xué)上冊《全等三角形》同步測試練習(xí)題(解析版)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》同步測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(

)A.6 B.5 C.4 D.2、已知∠AOB=60°,以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為()A.15° B.45° C.15°或30° D.15°或45°3、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°4、下列關(guān)于全等三角形的說法不正確的是A.全等三角形的大小相等 B.兩個(gè)等邊三角形一定是全等三角形C.全等三角形的形狀相同 D.全等三角形的對應(yīng)邊相等5、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.1第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,則∠DEF=______度.2、如圖,已知,,添加一個(gè)條件,使,你添加的條件是______(填一個(gè)即可).3、如圖,點(diǎn)B、C、E三點(diǎn)在同一直線上,且AB=AD,AC=AE,BC=DE,若,則∠3=______°.4、如圖,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,則BF=_______.5、如圖,△ABC≌△DBE,△ABC的周長為30,AB=9,BE=8,則AC的長是__.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,已知射線AB與直線CD交于點(diǎn)O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度數(shù);(2)試說明OD平分∠AOG.2、如圖,小明和小華兩家位于A,B兩處,隔河相望.要測得兩家之間的距離,小明設(shè)計(jì)如下方案:從點(diǎn)B出發(fā)沿河岸畫一條射線BF,在BF上截取,過點(diǎn)D作,取點(diǎn)E使E,C,A在同一條直線上,則DE的長就是A,B之間的距離,說明他設(shè)計(jì)的道理.3、(1)如圖①,和都是等邊三角形,且點(diǎn),,在一條直線上,連結(jié)和,直線,相交于點(diǎn).則線段與的數(shù)量關(guān)系為_____________.與相交構(gòu)成的銳角的度數(shù)為___________.(2)如圖②,點(diǎn),,不在同一條直線上,其它條件不變,上述的結(jié)論是否還成立.(3)應(yīng)用:如圖③,點(diǎn),,不在同一條直線上,其它條件依然不變,此時(shí)恰好有.設(shè)直線交于點(diǎn),請把圖形補(bǔ)全.若,則___________.4、(2019秋?九龍坡區(qū)校級月考)如圖.在四邊形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分別是邊BC、CD延長線上的點(diǎn),且∠EAF∠BAD,求證:EF=BE﹣FD.5、如圖,在△ABC中,∠ABC、∠ACB的平分線交于點(diǎn)D,延長BD交AC于E,G、F分別在BD、BC上,連接DF、GF,其中∠A=2∠BDF,GD=DE.(1)當(dāng)∠A=80°時(shí),求∠EDC的度數(shù);(2)求證:CF=FG+CE.-參考答案-一、單選題1、D【解析】【分析】根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進(jìn)行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點(diǎn)】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應(yīng)用相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)題意作圖,可得出OP為∠AOB的角平分線,有,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)有兩種情況,依據(jù)所作圖形即可得解.【詳解】解:(1)以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,則OP為∠AOB的平分線,∴(2)兩弧在∠AOB內(nèi)交于點(diǎn)P,以O(shè)P為邊作∠POC=15°,則∠BOC=15°或45°,故選:D.【考點(diǎn)】本題考查的知識點(diǎn)是根據(jù)題意作圖并求解,依據(jù)題意作出正確的圖形是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)全等三角形的定義與性質(zhì)即可求解.【詳解】A、全等三角形的大小相等,說法正確,故A選項(xiàng)錯(cuò)誤;B、兩個(gè)等邊三角形,三個(gè)角對應(yīng)相等,但邊長不一定相等,所以不一定是全等三角形,故B選項(xiàng)正確;C、全等三角形的形狀相同,說法正確,故C選項(xiàng)錯(cuò)誤;D、全等三角形的對應(yīng)邊相等,說法正確,故D選項(xiàng)錯(cuò)誤.故選B.【考點(diǎn)】本題考查了全等三角形的定義與性質(zhì),能夠完全重合的兩個(gè)三角形叫做全等三角形,即形狀相同、大小相等兩個(gè)三角形叫做全等三角形;全等三角形的對應(yīng)邊相等,對應(yīng)角相等.5、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進(jìn)行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點(diǎn)O作OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,BD與OA相交于點(diǎn)H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個(gè)數(shù)有4個(gè);故選A.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.二、填空題1、40【解析】【分析】設(shè)∠BAC為4x,則∠ACB為3x,∠ABC為2x,由∠BAC+∠ACB+∠ABC=180°得4x+3x+2x=180.【詳解】解:設(shè)∠BAC為4x,則∠ACB為3x,∠ABC為2x∵∠BAC+∠ACB+∠ABC=180°∴4x+3x+2x=180,解得x=20∴∠ABC=2x=40°∵△ABC≌△DEF∴∠DEF=∠ABC=40°.故答案為40【考點(diǎn)】考核知識點(diǎn):全等三角形性質(zhì).理解全等三角形性質(zhì)是關(guān)鍵.2、(答案不唯一)【解析】【分析】此題是一道開放型的題目,答案不唯一,先根據(jù)∠BCE=∠ACD求出∠BCA=∠DCE,再根據(jù)全等三角形的判定定理SAS推出即可.【詳解】解:添加的條件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案為:CB=CE(答案不唯一).【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL等.3、47【解析】【分析】根據(jù)“邊邊邊”證明,再根據(jù)全等三角形的性質(zhì)可得∠ABC=∠1,∠BAC=∠2,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和求出∠3=∠1+∠2,然后求解即可.【詳解】解:在△ABC和△ADE中,,∴(SSS),∴∠ABC=∠1,∠BAC=∠2,∴∠3=∠ABC+∠BAC=∠1+∠2,∵,∴,∴.故答案為:47.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì)以及三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角和的性質(zhì),熟練掌握三角形全等的判定方法是解題關(guān)鍵.4、或【解析】【分析】延長AD至G,使DG=AD,連接BG,可證明,則BG=AC,,根據(jù)AE=EF,得到,可證出,即得出AC=BF,從而得出BF的長.【詳解】解:如圖,延長AD至G,使DG=AD,連接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案為:【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),證明線段相等,一般轉(zhuǎn)化為證明三角形全等,正確地作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.5、13【解析】【分析】根據(jù)全等三角形的性質(zhì)求出BC,根據(jù)三角形的周長公式計(jì)算,得到答案.【詳解】解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周長為30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案為:13.【考點(diǎn)】此題主要考查全等三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的性質(zhì).三、解答題1、(1)150°;(2)證明見解析.【解析】【分析】(1)根據(jù)兩直線平行,同位角相等可得,再根據(jù)角平分線的定義求出,然后根據(jù)平角等于列式進(jìn)行計(jì)算即可得解;(2)先求出,再根據(jù)對頂角相等求出,然后根據(jù)角平分線的定義即可得解.【詳解】解:(1),,平分,,;(2),,,,,平分.【考點(diǎn)】本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),垂線的定義,(2)根據(jù)度數(shù)相等得到相等的角是關(guān)鍵.2、見解析【解析】【分析】根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得,然后利用“角角邊”證明和全等,根據(jù)全等三角形對應(yīng)邊相等解答;【詳解】解:,,在和中,,,,即的長就是、兩點(diǎn)之間的距離.【考點(diǎn)】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.3、(1)相等,;(2)成立,證明見解析;(3)見解析,4.【解析】【分析】(1)證明△BCD≌△ACE,并運(yùn)用三角形外角和定理和等邊三角形的性質(zhì)求解即可;(2)是第(1)問的變式,只是位置變化,結(jié)論保持不變;(3)根據(jù)∠AEC=30°,判定AE是等邊三角形CDE的高,運(yùn)用前面的結(jié)論,把條件集中到一個(gè)含有30°角的直角三角形中求解即可.【詳解】(1)相等;

.理由如下:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:證明:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)補(bǔ)全圖形(如圖),∵△CDE是等邊三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根據(jù)(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案為:4.【考點(diǎn)】本題是一道猜想證明題,以兩線段之間的大小關(guān)系為基礎(chǔ),考查了等邊三角形的性質(zhì),三角形的全等,直角三角形的性質(zhì),證明兩個(gè)手拉手模型三角形全等是解題的關(guān)鍵.4、詳見解析【解析】【分析】在BE上截取BG,使BG=DF,連接AG.根據(jù)SAS證明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根據(jù)∠EAF∠BAD,可知∠GAE=∠EAF,可證明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【詳解】證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.【考點(diǎn)】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)已知條件作出輔助線求解.5、(1)(2)證明見解析【解析】【分析】(1)根據(jù)三角形內(nèi)角和與角平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論