版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是()A.①②③ B.①②④ C.①③④ D.①②③④2、某同學把一塊三角形的玻璃打碎成了3塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的方法是(
).A.帶①去 B.帶②去 C.帶③去 D.①②③都帶3、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關(guān)系(
)A. B. C. D.4、下列選項中表示兩個全等圖形的是()A.形狀相同的兩個圖形 B.能夠完全重合的兩個圖形C.面積相等的兩個圖形 D.周長相等的兩個圖形5、若△ABC≌△DEF,且△ABC的周長為20,AB=5,BC=8,則DF長為(
)A.5 B.8 C.7 D.5或86、如圖,在ABC和BDE中,點C在邊BD上,邊AC交邊BE于點F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(
)A.∠EDB B.∠BED C.∠AFB D.2∠ABF7、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數(shù)等于()A.148° B.140° C.135° D.128°8、如圖,在中,,的平分線交于點E,于點D,若的周長為12,,則的周長為(
)A.9 B.8 C.7 D.69、如圖,若,則下列結(jié)論中不一定成立的是(
)A. B. C. D.10、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖所示的圖案是由全等的圖形拼成的,其中AD=0.5,BC=1,則AF=______.2、如圖,若△ABC≌△ADE,且∠1=35°,則∠2=_____.3、如圖,在平面直角坐標系中,將沿軸向右平移后得到,點A的坐標為,點A的對應(yīng)點在直線上,點在的角平分線上,若四邊形的面積為4,則點的坐標為________.4、如圖所示的網(wǎng)格是正方形網(wǎng)格,點A,B,C,D均落在格點上,則∠BAD+∠ADC=_____.5、如圖,,,若,則線段長為______.6、如圖,在和中,,,直線交于點M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).7、如圖,在中,,F(xiàn)是高AD和BE的交點,cm,則線段BF的長度為______.8、如圖,在中,,AD是的角平分線,過點D作,若,則______.9、如圖,點B、E、C、F在同一條直線上,AB∥DE,AB=DE,∠A=∠D,BF=10,BC=6,則EC=_____.10、如圖,在△ABC中,點D、E分別為邊AC、BC上的點,且AD=DE,AB=BE,∠A=70°,則∠CED=______度.三、解答題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,BC=AB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF.(1)求證:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度數(shù).2、中,,,點是邊上的一個動點,連接,過點作于點.(1)如圖1,分別延長,相交于點,求證:;(2)如圖2,若平分,,求的長;(3)如圖3,是延長線上一點,平分,試探究,,之間的數(shù)量關(guān)系并說明理由.3、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大??;(2)若EF⊥AE交AC于F,求證:∠C=2∠FEC.4、如圖,已知中,,是內(nèi)一點,且,試說明的理由.5、如圖,在中,,BD是的平分線,于點E,點F在BC上,連接DF,且.(1)求證:;(2)若,,求AB的長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)三角形內(nèi)角和定理以及角平分線定義判斷①;根據(jù)全等三角形的判定和性質(zhì)判斷②③;根據(jù)角平分線的判定與性質(zhì)判斷④.【詳解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分別平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正確.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正確.連接CP,如下圖所示:∵△ABC的角平分線AD、BE相交于點P,∴點P到AB、AC的距離相等,點P到AB、BC的距離相等,∴點P到BC、AC的距離相等,∴點P在∠ACB的平分線上,∴CP平分∠ACB,故④正確,綜上所述,①②③④均正確,故選:D.【考點】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理.掌握相關(guān)性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)三角形全等的判定定理判斷即可.【詳解】帶③去,理由如下:∵③中滿足ASA的條件,∴帶③去,故選C.【考點】本題考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)△△,證得,=,再利用∥BC得到=,再根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點】此題考查旋轉(zhuǎn)圖形的性質(zhì),等腰三角形的性質(zhì),兩直線平行內(nèi)錯角相等,三角形的內(nèi)角和定理.4、B【解析】【分析】利用全等圖形的定義分析即可.【詳解】A、形狀相同的兩個圖形,不一定是全等圖形,故此選項錯誤;B、能夠完全重合的兩個圖形,一定是全等圖形,故此選項正確;C、面積相等的兩個圖形,不一定是全等圖形,故此選項錯誤;D、周長相等的兩個圖形,不一定是全等圖形,故此選項錯誤;故選B.【考點】此題主要考查了全等圖形,正確把握全等圖形的定義是解題關(guān)鍵.5、C【解析】【分析】根據(jù)三角形的周長可得AC長,然后再利用全等三角形的性質(zhì)可得DF長.【詳解】∵△ABC的周長為20,AB=5,BC=8,∴AC=20?5?8=7,∵△ABC≌△DEF,∴DF=AC=7,故選C.【考點】此題主要考查了全等三角形的性質(zhì),關(guān)鍵是掌握全等三角形的對應(yīng)邊相等.6、C【解析】【分析】根據(jù)全等三角形的判定與性質(zhì)可得=,再根據(jù)三角形外角的性質(zhì)即可求得答案.【詳解】解:在和中,,,,是的外角,,∴,故選:C.【考點】本題考查了全等三角形的判定與性質(zhì)以及三角形的外角性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解決本題的關(guān)鍵.7、A【解析】【分析】根據(jù)已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內(nèi)角和可求得∠E,再應(yīng)用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點】本題考查了全等三角形的判定和性質(zhì)、三角形外角和、內(nèi)角和定理,難度不大,但要注意數(shù)形結(jié)合思想的運用.8、D【解析】【分析】通過證明得到、,的周長,即可求解.【詳解】解:∵平分∴,又∵∴又∵∴(AAS)∴、,的周長為,故選:D,【考點】此題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定方法與性質(zhì),以及線段之間的等量關(guān)系.9、A【解析】【分析】根據(jù)翻三角形全等的性質(zhì)一一判斷即可.【詳解】解:∵△ABC≌△ADE,∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,∴∠BAD=∠CAE,∵AD=AB,∴∠ABD=∠ADB,∴∠BAD=180°-∠ABD-∠ADB,∴∠CDE=180°-∠ADB-ADE,∵∠ABD=∠ADE,∴∠BAD=∠CDE故B、C、D選項不符合題意,故選:A.【考點】本題考了三角形全等的性質(zhì),解題的關(guān)鍵是三角形全等的性質(zhì).10、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應(yīng)角相等就可以解決.二、填空題1、6【解析】【分析】由圖形知,所示的圖案是由梯形ABCD和七個與它全等的梯形拼接而成,根據(jù)全等則重合的性質(zhì)求解即可.【詳解】解:由題可知,圖中有8個全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.故答案為:6.【考點】考查了全等圖形的性質(zhì),本題利用了全等形圖形一定重合的性質(zhì)求解,做題的關(guān)鍵是找準相互重合的對應(yīng)邊.2、35°.【解析】【分析】根據(jù)全等的性質(zhì)可得:∠EAD=∠CAB,再根據(jù)等式的基本性質(zhì)可得∠1=∠2=35°.【詳解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案為35°.【考點】此題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解決此題的關(guān)鍵.3、【解析】【分析】先求出點坐標,由此可知平移的距離,根據(jù)四邊形的面積為4,可求出點坐標和平移的方向、距離,則可求B′點坐標.【詳解】解:∵沿軸向右平移后得到,∴點與點是縱坐標相同,是4,把代入中,得到,∴點坐標為(4,4),∴點是沿軸向右平移4個單位,過點作,,∵點在的角平分線上,且,四邊形的面積為4,∴∴∴∴點坐標為(1,3),根據(jù)平移的性質(zhì)可知點B也是向右平移4個單位得到.∵點(1,3),∴B′(5,3).故答案為:(5,3).【考點】本題主要考查了一次函數(shù)圖象上點的坐標特征、平移性質(zhì),通過求平移后的坐標得到平移的距離是解決本題的的關(guān)鍵.4、或度【解析】【分析】證明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根據(jù)同角的余角相等和三角形的內(nèi)角和可得結(jié)論.【詳解】解:如圖,設(shè)AB與CD相交于點F,在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案為:90度.【考點】本題網(wǎng)格型問題,考查了三角形全等的性質(zhì)和判定及直角三角形各角的關(guān)系,本題構(gòu)建全等三角形是關(guān)鍵.5、8【解析】【分析】過點D作DH⊥AC于H,由等腰三角形的性質(zhì)可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性質(zhì)可證DH=CF,由“AAS”可證△DHE≌△FCE,可得EH=EC,即可求解.【詳解】解:如圖,過點D作DH⊥AC于H,在△DHE和△FCE中,故答案為8.【考點】本題考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),添加恰當輔助線構(gòu)造全等三角形是解題的關(guān)鍵.6、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.7、8cm【解析】【分析】先求,推導出,再求出,,根據(jù)ASA證明,即可得出答案.【詳解】∵,,∴,∴,∴,∵,,∴,在△BFD和△ACD中,∴(ASA),∴cm故答案為:8cm【考點】本題考查了全等三角形的性質(zhì)和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等.8、7【解析】【分析】先利用角平分線性質(zhì)證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點】本題主要考查了角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握角平分線的性質(zhì).9、2【解析】【分析】根據(jù)平行線的性質(zhì)得出∠B=∠DEF,即可利用ASA證明△ABC≌△DEF,根據(jù)全等三角形的性質(zhì)得出BC=EF=6,即可根據(jù)線段的和差得解.【詳解】解:∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴BC=EF,∵BF=10,BC=6,∴EF=6,CF=BF﹣BC=4,∴EC=EF﹣CF=2,故答案為:2.【考點】此題考查了全等三角形的判定與性質(zhì),利用ASA證明△ABC≌△DEF是解題的關(guān)鍵.10、110【解析】【分析】根據(jù)SSS證△ABD≌△EBD,得∠BED=∠A=70°,進而得出∠CED.【詳解】解:∵AD=DE,AB=BE又BD=BD∴△ABD≌△EBD(SSS)∴∠BED=∠A=70°∴∠CED=180°-∠BED=180°-70°=110°故本題答案為110.【考點】本題通過考查全等三角形的判定和性質(zhì),進而得出結(jié)論.三、解答題1、(1)證明見解析(2)【解析】【分析】(1)由“HL”可證Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠BAE的度數(shù),又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度數(shù),則由∠ACF=∠BCF+∠ACB即可求得答案.(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL);(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°?!逺t△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°【考點】此題考查了直角三角形全等的判定與性質(zhì).解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.2、(1)見解析(2)(3),理由見解析【解析】【分析】(1)欲證明BE=AD,只要證明即可;(2)如圖2,分別延長BF,AC交于點E,證,可求;(3)如圖3中,分別延長BF,AC交于點E,由(1)可得△ACD≌△BCE,得CD=CE,再證可得結(jié)論.(1)解:(1)∵,∴,又∵,∴.在和中,∴.∴.(2)解:如圖2,延長,交于點.∵,∴,∵平分,∴.在和中,∴.∴.由(1)可得,.∴.(3)解:.理由:如圖3,延長,交于點.由(1)可得,,∴.∵,∴,∵平分,∴.在和中,∴.∴.∵.∴.【考點】本題考查三角形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.3、(1)17.5°;(2)證明過程見解析【解析】【分析】(1)首先計算出∠B,∠BAC的度數(shù),根據(jù)AE是∠BAC的角平分線可得∠EAC=37.5°,再根據(jù)Rt△ADC中直角三角形兩銳角互余可得∠DAC的度數(shù),進而可得答案;(2)過A作AD⊥BC于D,證明∠DAE=∠FEC,由三角形內(nèi)角和定理得到∠EAC=90°-∠C,進而可得∠DAE=∠DAC-∠EAC,利用等量代換可得∠DAE=∠C即可求解.【詳解】解:(1)解:∵∠C=35°,∠B=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026甘肅民族師范學院招聘82人備考題庫完整答案詳解
- 2026年農(nóng)業(yè)氣候韌性提升實務(wù)課
- 家電家居產(chǎn)品演示話術(shù)手冊
- 財政系統(tǒng)預算培訓課件
- 空調(diào)修理年終總結(jié)范文(3篇)
- 職業(yè)健康監(jiān)護中的職業(yè)史采集技巧
- 職業(yè)健康促進的投資回報周期
- 職業(yè)健康促進與職業(yè)健康人才培養(yǎng)
- 職業(yè)健康與心理健康的整合干預策略
- 茂名2025年廣東茂名市海洋綜合執(zhí)法支隊濱海新區(qū)大隊招聘4人筆試歷年參考題庫附帶答案詳解
- 2025年秋季散學典禮校長講話:以四馬精神赴新程攜溫暖期許啟寒假
- 《智慧園區(qū)評價要求》
- 大中專高鐵乘務(wù)專業(yè)英語教學課件
- 吉林大學《電磁場與電磁波》2021-2022學年期末試卷
- 鮮花 高清鋼琴譜五線譜
- 安全生產(chǎn)標準化持續(xù)改進方案
- CJT511-2017 鑄鐵檢查井蓋
- 2024年高考語文考前專題訓練:現(xiàn)代文閱讀Ⅱ(散文)(解析版)
- 第六節(jié)暫準進出口貨物課件
- 中醫(yī)外科乳房疾病診療規(guī)范診療指南2023版
- 壓實瀝青混合料密度 表干法 自動計算
評論
0/150
提交評論