版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省鳳城市中考數(shù)學基礎強化考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、已知拋物線P:,將拋物線P繞原點旋轉180°得到拋物線,當時,在拋物線上任取一點M,設點M的縱坐標為t,若,則a的取值范圍是(
)A. B. C. D.2、拋一枚質地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.3、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.4、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(
)A.,21 B.,11 C.4,21 D.,695、在平面直角坐標系中,已知點與點關于原點對稱,則的值為()A.4 B.-4 C.-2 D.2二、多選題(5小題,每小題3分,共計15分)1、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.2、已知拋物線上部分點的橫坐標x與縱坐標y的對應值如表所示,對于下列結論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(
)A.① B.② C.③ D.④3、下列方程中,是一元二次方程的是(
)A. B. C. D.4、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應值如下表:x…-2-1012……tm22n…已知.則下列結論中,正確的是(
)A. B.和是方程的兩個根C. D.(s取任意實數(shù))5、下列說法不正確的是()A.相切兩圓的連心線經(jīng)過切點 B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對的弦相等第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖有一拋物線形的拱橋,拱高10米,跨度為40米,則該拋物線的表達式為______________.2、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關系式是____________,自變量x的取值范圍是____________.3、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.4、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.5、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內旋轉,點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.四、簡答題(2小題,每小題10分,共計20分)1、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數(shù)量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,若,,求的長.2、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.五、解答題(4小題,每小題10分,共計40分)1、受“新冠”疫情的影響,某銷售商在網(wǎng)上銷售A、B兩種型號的“手寫板”,獲利頗豐.已知A型,B型手寫板進價、售價和每日銷量如表格所示:進價(元/個)售價(元/個)銷量(個/日)A型600900200B型8001200400根據(jù)市場行情,該銷售商對A手寫板降價銷售,同時對B手寫板提高售價,此時發(fā)現(xiàn)A手寫板每降低5就可多賣1,B手寫板每提高5就少賣1,要保持每天銷售總量不變,設其中A手寫板每天多銷售x,每天總獲利的利潤為y(1)求y、x間的函數(shù)關系式并寫出x取值范圍;(2)要使每天的利潤不低于234000元,直接寫出x的取值范圍;(3)該銷售商決定每銷售一個B手寫板,就捐a元給因“新冠疫情”影響的困難家庭,當時,每天的最大利潤為229200元,求a的值.2、如圖,在平面直角坐標系中,△ABC的BC邊與x軸重合,頂點A在y軸的正半軸上,線段OB,OC()的長是關于x的方程的兩個根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個動點,過點P作PD⊥x軸,垂足為D,PD與直線AB交于點Q,設△CPQ的面積為S(),點P的橫坐標為a,求S與a的函數(shù)關系式;(3)點M的坐標為,當△MAB為直角三角形時,直接寫出m的值.3、隨著課后服務的全面展開,某校組織了豐富多彩的社團活動.炯炯和露露分別打算從以下四個社團:A.快樂足球,B.數(shù)學歷史,C.文學欣賞,D.棋藝鑒賞中,選擇一個社團參加.(1)炯炯選擇數(shù)學歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個社團的概率.4、在數(shù)學活動課上,王老師要求學生將圖1所示的3×3正方形方格紙,剪掉其中兩個方格,使之成為軸對稱圖形.規(guī)定:凡通過旋轉能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設計方案(陰影部分為要剪掉部分)請在圖中畫出4種不同的設計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)-參考答案-一、單選題1、A【解析】【分析】先求出拋物線的解析式,再列出不等式,求出其解集或,從而可得當x=1時,,有成立,最后求出a的取值范圍.【詳解】解:∵拋物線P:,將拋物線P繞原點旋轉180°得到拋物線,∴拋物線P與拋物線關于原點對稱,設點(x,y)在拋物線P’上,則點(-x,-y)一定在拋物線P上,∴∴拋物線的解析式為,∵當時,在拋物線上任取一點M,設點M的縱坐標為t,若,即令,∴,解得:或,設,∵開口向下,且與x軸的兩個交點為(0,0),(4a,0),即當時,要恒成立,此時,∴當x=1時,即可,得:,解得:,又∵∴故選A【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質.2、B【分析】根據(jù)隨機擲一枚質地均勻的硬幣三次,可以分別假設出三次情況,畫出樹狀圖即可.【詳解】解:隨機擲一枚質地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關鍵是根據(jù)題意畫出樹狀圖.3、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關鍵.4、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.5、C【分析】根據(jù)關于原點對稱的點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反即可得到答案.【詳解】解:點與點關于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標特點,解題的關鍵是掌握點的變化規(guī)律.二、多選題1、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.2、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點坐標結合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數(shù)與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數(shù)的圖象和性質.解題的關鍵在于根據(jù)表格獲取正確的信息.3、ABC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A、是一元二次方程,故本選項符合題意;B、是一元二次方程,故本選項符合題意;C、是一元二次方程,故本選項符合題意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本選項不符合題意;故選:【考點】本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內容是解此題的關鍵,注意:只含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)最高是2的整式.4、BC【解析】【分析】由表中數(shù)據(jù),結合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結合拋物線對稱軸為:,得出,由,,結合二次函數(shù)圖象性質,逐一分析各個選項,即可作出相應的判斷.【詳解】解:由表格數(shù)據(jù)可知,當時,,將點代入中,可得.由表格數(shù)據(jù)可知,當時,;當時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應的函數(shù)值相等,∵時,對應函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質,二次函數(shù)與一元二次方程的關系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質是解題的關鍵.5、BCD【解析】【分析】要找出正確命題,可運用相關基礎知識分析找出正確選項,也可以通過舉反例排除不正確選項,從而得出正確選項.(1)等弧指的是在同圓或等圓中,能夠完全重合的弧.長度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對的弦相等指的是在同圓或等圓中.【詳解】解:A、根據(jù)圓的軸對稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的弧.而此命題沒有強調在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯誤,符合題意;B、此弦不能是直徑,命題錯誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯誤,符合題意;故選:BCD.【考點】本題考查的是兩圓的位置關系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關鍵.三、填空題1、【解析】【分析】由題意拋物線過點(40,0),頂點坐標為(20,10),設拋物線的解析式為,從而求出a的值,然后確定拋物線的解析式.【詳解】解:依題意得此函數(shù)解析式頂點為,∴設解析式為,又函數(shù)圖象經(jīng)過,,,.故答案為.【考點】本題主要考查用待定系數(shù)法確定二次函數(shù)的解析式,解題時應根據(jù)情況設拋物線的解析式從而使解題簡單,此題設為頂點式比較簡單.2、
S=-3x2+24x
≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.3、2【分析】連接OC,利用半徑相等以及三角形的外角性質求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質.熟練掌握垂徑定理是解題的關鍵.4、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點睛】本題主要考查了圓內接四邊形,勾股定理,熟練掌握圓內接四邊形的性質,勾股定理是解題的關鍵.5、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉的性質,勾股定理,直角三角形斜邊上中線的性質,確定點的位置是解題的關鍵.四、簡答題1、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點】本題考查了正方形、矩形的性質,全等三角形的判定和性質,相似三角形的判定和性質,解直角三角形,正確尋找全等三角形或相似三角形解決問題,學會利用參數(shù)構建方程解決問題,是解題的關鍵.2、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【考點】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標轉換為線段長度,幾何圖形與二次函數(shù)結合的問題,最后一問推出CG=HG為解題關鍵.五、解答題1、(1)(),且x為整數(shù);(2),且x為整數(shù);(3)a=30【解析】【分析】(1)根據(jù)題意列函數(shù)關系式和不等式組,于是得到結論;(2)根據(jù)題意列方程和不等式,于是得到結論;(3)根據(jù)題意列函數(shù)關系式,然后根據(jù)二次函數(shù)的性質即可得到結論.【詳解】解:(1)由題意得,,解得,故的取值范圍為且為整數(shù);(2)的取值范圍為.理由如下:,當時,,,,解得:或.要使,得;,;(3)設捐款后每天的利潤為元,則,對稱軸為,,,拋物線開口向下,當時,隨的增大而增大,當時,最大,,解得.【考點】本題考查了二次函數(shù)的應用,一元一次不等式的應用,列函數(shù)關系式等等,最大銷售利潤的問題常利用函數(shù)的增減性來解答.2、(1);(2);(3)m的值為-3或-1或2或7;【解析】【分析】(1)根據(jù)一元二次方程的解求出OB和OC的長度,然后得到點B,點C坐標和OA的長度,進而得到點A坐標,最后使用待定系數(shù)法即可求出直線AC的解析式;(2)根據(jù)點A,點B坐標使用待定系數(shù)法求出直線AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年醫(yī)院免疫治療技術應用研究合同
- 2026年品牌聯(lián)合營銷合同
- 兼并公司合同(標準版)
- 2026年藥品FDA突破性療法認定申請合同
- 2025年線上酒店預訂平臺建設可行性研究報告
- 2025年城市衛(wèi)生公共設施提高項目可行性研究報告
- 2025年疫情防控物資儲備中心建設項目可行性研究報告
- 2025年新能源電動滑板車項目可行性研究報告
- 2025年綠色生態(tài)農(nóng)業(yè)示范區(qū)項目可行性研究報告
- 中歐外貿(mào)協(xié)議書
- 農(nóng)夫山泉代理合同范本
- 工作總結亮點與不足
- 2023-2024學年廣東省廣州市海珠區(qū)八年級(上)期末地理試題及答案
- 直腸脫垂的護理查房
- 照明設施日常巡檢與維護方案
- 旅游策劃理論及實務第1章旅游策劃導論
- 企業(yè)普法培訓課件
- 團建活動合同協(xié)議書范本
- 光大銀行信用卡合同協(xié)議
- 鋁灰渣資源化技術服務方案
- 人教版(2024)八年級上冊數(shù)學第十八章 分式 教案(單元整體設計)
評論
0/150
提交評論