版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省龍海市中考數(shù)學強化訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在矩形ABCD中,點E在CD邊上,連接AE,將沿AE翻折,使點D落在BC邊的點F處,連接AF,在AF上取點O,以O(shè)為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點G,H,連接FG,GH.則下列結(jié)論錯誤的是()A. B.四邊形EFGH是菱形C. D.2、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個3、在同一坐標系中,二次函數(shù)與一次函數(shù)的圖像可能是(
)A. B.C. D.4、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.5、如圖,A,B,C是正方形網(wǎng)格中的三個格點,則是()A.優(yōu)弧 B.劣弧 C.半圓 D.無法判斷二、多選題(5小題,每小題3分,共計15分)1、若關(guān)于的一元二次方程的兩個實數(shù)根分別是,且滿足,則的值不可能為(
)A.或 B. C. D.不存在2、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結(jié)論正確的有(
)A.B.當時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標為整數(shù)的點,則a的取值范圍是3、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(
)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是24、如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小不可能是(
)A. B. C. D.5、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、某班共有36名同學,其中男生16人,喜歡數(shù)學的同學有12人,喜歡體育的同學有24人.從該班同學的學號中隨意抽取1名同學,設(shè)這名同學是女生的可能性為a,這名同學喜歡數(shù)學的可能性為b,這名同學喜歡體育的可能性為c,則a,b,c的大小關(guān)系是___________.2、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.3、如圖,是等邊三角形,點D為BC邊上一點,,以點D為頂點作正方形DEFG,且,連接AE,AG.若將正方形DEFG繞點D旋轉(zhuǎn)一周,當AE取最小值時,AG的長為________.4、不透明的袋子里裝有一個黑球,兩個紅球,這些球除顏色外無其它差別,從袋子中取出一個球,不放回,再取出一個球,記下顏色,兩次摸出的球是一紅—黑的概率是________.5、你知道嗎,對于一元二次方程,我國古代數(shù)學家還研究過其幾何解法呢!以方程即為例加以說明.數(shù)學家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構(gòu)造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.那么在下面右邊三個構(gòu)圖(矩形的頂點均落在邊長為1的小正方形網(wǎng)格格點上)中,能夠說明方程的正確構(gòu)圖是_____.(只填序號)四、簡答題(2小題,每小題10分,共計20分)1、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.2、(1)計算×cos45°﹣()﹣1+20180;(2)解方程組五、解答題(4小題,每小題10分,共計40分)1、如圖①已知拋物線的圖象與軸交于、兩點(在的左側(cè)),與的正半軸交于點,連結(jié);二次函數(shù)的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標為,點的坐標為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結(jié),將沿翻折,的對應(yīng)點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標:若不存在,請說明理由.2、如圖,已知二次函數(shù)的圖象經(jīng)過點.(1)求的值和圖象的頂點坐標.
(2)點在該二次函數(shù)圖象上.
①當時,求的值;②若到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍.3、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?4、若二次函數(shù)圖像經(jīng)過,兩點,求、的值.-參考答案-一、單選題1、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對A作出判斷;接下來延長EF與AB交于點N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點G、H分別是切點,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯誤,符合題意.故選C.【點睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關(guān)鍵.2、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.3、C【解析】【分析】直線與拋物線聯(lián)立解方程組,若有解,則圖象有交點,若無解,則圖象無交點;根據(jù)二次函數(shù)的對稱軸在y左側(cè),a,b同號,對稱軸在y軸右側(cè)a,b異號,以及當a大于0時開口向上,當a小于0時開口向下,來分析二次函數(shù);同時在假定二次函數(shù)圖象正確的前提下,根據(jù)一次函數(shù)的一次項系數(shù)為正,圖象從左向右逐漸上升,一次項系數(shù)為負,圖象從左向右逐漸下降;一次函數(shù)的常數(shù)項為正,交y軸于正半軸,常數(shù)項為負,交y軸于負半軸.如此分析下來,二次函數(shù)與一次函數(shù)無矛盾者為正確答案.【詳解】解:由方程組得ax2=?a,∵a≠0∴x2=?1,該方程無實數(shù)根,故二次函數(shù)與一次函數(shù)圖象無交點,排除B.A:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;但是一次函數(shù)b為一次項系數(shù),圖象顯示從左向右上升,b>0,兩者矛盾,故A錯;C:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;b為一次函數(shù)的一次項系數(shù),圖象顯示從左向右下降,b<0,兩者相符,故C正確;D:二次函數(shù)的圖象應(yīng)過原點,此選項不符,故D錯.故選C.【考點】本題考查的是同一坐標系中二次函數(shù)與一次函數(shù)的圖象問題,必須明確二次函數(shù)的開口方向與a的正負的關(guān)系,a,b的符號與對稱軸的位置關(guān)系,并結(jié)合一次函數(shù)的相關(guān)性質(zhì)進行分析,本題中等難度偏上.4、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.5、B【分析】根據(jù)三點確定一個圓,圓心的確定方法:任意兩點中垂線的交點為圓心即可判斷.【詳解】解;如圖,分別連接AB、AC、BC,取任意兩條線段的中垂線相交,交點就是圓心.故選:B.【點睛】本題考查已知圓上三點求圓心,取任意兩條線段中垂線交點確定圓心是解題關(guān)鍵.二、多選題1、ABD【解析】【分析】利用可得,從而得到,解出k結(jié)合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數(shù)根分別是,,∴,∵,∴,即,解得:,當時,,∴此時方程無實數(shù)根,不合題意,舍去,當時,,∴此時方程有兩個不相等實數(shù)根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,熟練掌握若一元二次方程的兩個實數(shù)根分別是,,則是解題的關(guān)鍵.2、ACD【解析】【分析】求得頂點坐標,根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當,二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標為整數(shù)的點,且對稱軸為直線,∴當時,,當時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.3、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應(yīng)用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).4、ACD【解析】【分析】延長ED交⊙O于N,連接OD,并延長交⊙O于M,根據(jù)已知條件知的度數(shù)是80°,根據(jù)點D為弦AC的中點得出,求出、的度數(shù)=40°,即可求出40°<的度數(shù)<80°,再得出答案即可.【詳解】解:延長ED交⊙O于N,連接OD,并延長交⊙O于M,∵∠AOC=80°,∴的度數(shù)是80°,∵點D為弦AC的中點,OA=OC,∴∠AOD=∠COD,∴,即M為的中點,∴、的度數(shù)都是×80°=40°,∵>,∴40°<的度數(shù)<80°,∴20°<∠CED<40°,∴選項ACD符合題意;選項B不符合題意;故選:ACD.【考點】本題考查了圓心角、弧、弦之間的關(guān)系,圓周角定理,等腰三角形的性質(zhì)等知識點,能求出的范圍是解此題的關(guān)鍵.5、AB【解析】【分析】根據(jù)軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關(guān)鍵是熟記其概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.三、填空題1、c>a>b【解析】【分析】根據(jù)概率公式分別求出各事件的概率,故可求解.【詳解】依題意可得從該班同學的學號中隨意抽取1名同學,設(shè)這名同學是女生的可能性為,這名同學喜歡數(shù)學的可能性為,這名同學喜歡體育的可能性為,∵>>∴a,b,c的大小關(guān)系是c>a>b故答案為:c>a>b.【考點】本題考查概率公式的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.2、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.3、8【解析】【分析】過點A作于M,由已知得出,得出,由等邊三角形的性質(zhì)得出,,得出,在中,由勾股定理得出,當正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【詳解】過點A作于M,∵,∴,∴,∵是等邊三角形,∴,∵,∴,∴,在中,,當正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,,∴在中,;故答案為8.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及最小值問題;熟練掌握正方形的性質(zhì)和等邊三角形的性質(zhì)是解題的關(guān)鍵.4、【分析】根據(jù)題意列出表格,可得6種等可能結(jié)果,其中一紅—黑的有4種,再利用概率公式,即可求解.【詳解】解:根據(jù)題意列出表格如下:黑球紅球1紅球2黑球紅球1、黑球紅球2、黑球紅球1黑球、紅球1紅球2、紅球1紅球2黑球、紅球2紅球1、紅球2得到6種等可能結(jié)果,其中一紅—黑的有4種,所以兩次摸出的球是一紅—黑的概率是.故答案為:【點睛】本題主要考查了求概率,能夠利用畫樹狀圖或列表格的方法解答是解題的關(guān)鍵.5、②【解析】【分析】仿造案例,構(gòu)造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構(gòu)造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.故答案為②.【考點】本題考查了一元二次方程的應(yīng)用,仿造案例,構(gòu)造出合適的大正方形是解題的關(guān)鍵.四、簡答題1、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質(zhì)可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質(zhì)可求得DH、CH的長,繼而求得CD的長,從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵MN∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點】本題考查了作圖-應(yīng)用與設(shè)計作圖,菱形的性質(zhì)、等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理的應(yīng)用.首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.2、(1)1;(2)【解析】【分析】(1)先化簡二次根式、代入特殊角的三角函數(shù)值、計算負整數(shù)指數(shù)冪和零指數(shù)冪,再計算乘法和加減運算可得;(2)利用加減消元法求解可得.【詳解】(1)原式=3-3+1=3﹣3+1=1;(2)①+②×3,得:10x=20,解得:x=2,把x=2代入①,得:6+y=1,解得:y=1,∴原方程組的解為.【考點】本題考查了實數(shù)的混合運算與二元一次方程組的解法.涉及了二次根式的化簡、特殊角的三角函數(shù)值、0次冪與負指數(shù)冪的運算、加減消元法解二元一次方程組,熟練掌握相關(guān)的運算法則以及解題方法是解題的關(guān)鍵.五、解答題1、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標;在y=ax2﹣3ax﹣4a(a<0)令y=0可得關(guān)于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標;(2)如圖1,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結(jié)合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關(guān)于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質(zhì)和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標為(4,0),點C的坐標為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達出MN的長度,結(jié)合MN=CM即可列出關(guān)于m的方程,解方程即可求得對應(yīng)的m的值,從而得到對應(yīng)的點Q的坐標.【詳解】解:(1)∵對稱軸x=,∴點E坐標(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點A坐標(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點B的坐標為(4,0),點C的坐標為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當N在直線BC上方時,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 肩周炎護理員操作技能培訓
- 診所護理疼痛管理
- 白癜風患者的心理護理
- 干性皮膚的日常習慣與護理
- 護理課件學習資源豐富性評價
- 大豐市小海中學高二生物三同步課程講義第講種群的特征
- 2025秋人教版(新教材)初中美術(shù)八年級上冊知識點及期末測試卷及答案
- 2025年保險產(chǎn)品代銷協(xié)議
- 2025年云遷移項目風險矩陣更新:動態(tài)評估與優(yōu)先級調(diào)整
- 在線攝影拍攝行業(yè)市場趨勢分析
- 2026年保安員考試題庫500道附完整答案(歷年真題)
- 2025至2030中國司法鑒定行業(yè)發(fā)展研究與產(chǎn)業(yè)戰(zhàn)略規(guī)劃分析評估報告
- (2025年)危重病人的觀察與護理試題及答案
- 膝關(guān)節(jié)韌帶損傷康復(fù)課件
- 建筑施工項目職業(yè)病危害防治措施方案
- 船員上船前安全培訓課件
- 市政工程樁基檢測技術(shù)操作規(guī)程
- 如何申請法院提審申請書
- 中醫(yī)內(nèi)科慢性胃炎中醫(yī)診療規(guī)范診療指南2025版
- SCI審稿人回復(fù)課件
- 園林研學課件
評論
0/150
提交評論