綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步測評試卷(含答案詳解)_第1頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步測評試卷(含答案詳解)_第2頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步測評試卷(含答案詳解)_第3頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步測評試卷(含答案詳解)_第4頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》同步測評試卷(含答案詳解)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在中,,,點E在BC的延長線上,的平分線BD與的平分線CD相交于點D,連接AD,則下列結(jié)論中,正確的是A. B. C. D.2、如圖,△ABC是邊長為4的等邊三角形,點P在AB上,過點P作PE⊥AC,垂足為E,延長BC至點Q,使CQ=PA,連接PQ交AC于點D,則DE的長為()A.1 B.1.8 C.2 D.2.53、如圖,在和中,,,,線段BC的延長線交DE于點F,連接AF.若,,,則線段EF的長度為(

)A.4 B. C.5 D.4、如圖,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是()A.≌ B.≌C.≌ D.≌5、如圖,在△ABC中,AD是BC邊上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,連接FG,交DA的延長線于點E,連接BG,CF,則下列結(jié)論:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正確的有(

)A.①②③ B.①②④ C.①③④ D.①②③④6、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點F,連接BE.當(dāng)AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°7、已知∠AOB=60°,以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為()A.15° B.45° C.15°或30° D.15°或45°8、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°9、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(

)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;

(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.510、下列關(guān)于全等三角形的說法不正確的是A.全等三角形的大小相等 B.兩個等邊三角形一定是全等三角形C.全等三角形的形狀相同 D.全等三角形的對應(yīng)邊相等第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在和中,點B、E、C、F在同一條直線上,且,,請你再添加一個適當(dāng)?shù)臈l件:________________,使.2、如圖,△ABC中,AB=BC,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠BAE=25°,則∠ACF=__________度.3、如圖,BE⊥AC,垂足為D,且AD=CD,BD=ED.若∠ABC=54°,則∠E=________°.4、如圖,在△ABC中,點D是AC的中點,分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.5、如圖,在中,,F(xiàn)是高AD和BE的交點,cm,則線段BF的長度為______.6、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.7、如圖,四邊形ABCD,連接BD,AB⊥AD,CE⊥BD,AB=CE,BD=CD.若AD=5,CD=7,則BE=________.8、如圖,平分,.填空:因為平分,所以________.從而________.因此________.9、已知:如圖,是上一點,平分,,若,則________.(用的代數(shù)式表示)10、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.則DE=________.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知線段a、b和,用尺規(guī)作一個三角形,使.(要求:不寫已知、求作、作法、只畫圖,保留作圖痕跡)2、如圖,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點E.求證:BD=2CE.3、如圖,AC是∠BAE的平分線,點D是線段AC上的一點,∠C=∠E,AB=AD.求證:BC=DE.4、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時,∠AED=_________度(直接填空).5、如圖,已知,,,求證:.-參考答案-一、單選題1、B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判斷出AC≠AB,根據(jù)三角形內(nèi)角和定理可求出∠BAC的度數(shù),根據(jù)鄰補(bǔ)角定義可求出∠ACE度數(shù),由BD平分∠ABC,CD平分∠ACE,根據(jù)角平分線的定義以及三角形外角的性質(zhì)可求得∠BDC的度數(shù),繼而根據(jù)三角形內(nèi)角和定理可求得∠DOC的度數(shù),據(jù)此對各選項進(jìn)行判斷即可得.【詳解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故選B.【考點】本題考查了三角形內(nèi)角和定理,等腰三角形判定,角平分線的定義等,熟練掌握角平分線的定義以及三角形內(nèi)角和定理是解本題的關(guān)鍵.2、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.3、B【解析】【分析】證明,,根據(jù)全等三角形對應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.4、B【解析】【分析】觀察圖形,運(yùn)用SAS可判定△ABO與△ADO全等.【詳解】解:∵AB=AD,∠BAO=∠DAO,AO是公共邊,

∴△ABO≌△ADO(SAS).故選B.【考點】本題考查全等三角形的判定,屬基礎(chǔ)題,比較簡單.5、D【解析】【分析】證得△CAF≌△GAB(SAS),從而推得①正確;利用△CAF≌△GAB及三角形內(nèi)角和與對頂角,可判斷②正確;證明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,則③正確,同理△ANG≌△CDA,得出NG=AD,則FM=NG,證明△FME≌△GNE(AAS).可得出結(jié)論④正確.【詳解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正確;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC與AG所交的對頂角相等,∴BG與FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正確;過點F作FM⊥AE于點M,過點G作GN⊥AE交AE的延長線于點N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正確,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正確.故選:D.【考點】本題綜合考查了全等三角形的判定與性質(zhì)及等腰三角形的三線合一性質(zhì)與互余、對頂角,三角形內(nèi)角和等幾何基礎(chǔ)知識.熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準(zhǔn)確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問題.7、D【解析】【分析】根據(jù)題意作圖,可得出OP為∠AOB的角平分線,有,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)有兩種情況,依據(jù)所作圖形即可得解.【詳解】解:(1)以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,則OP為∠AOB的平分線,∴(2)兩弧在∠AOB內(nèi)交于點P,以O(shè)P為邊作∠POC=15°,則∠BOC=15°或45°,故選:D.【考點】本題考查的知識點是根據(jù)題意作圖并求解,依據(jù)題意作出正確的圖形是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.9、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結(jié)論(4)正確.∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯誤.綜上所知正確的結(jié)論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關(guān)鍵.10、B【解析】【分析】根據(jù)全等三角形的定義與性質(zhì)即可求解.【詳解】A、全等三角形的大小相等,說法正確,故A選項錯誤;B、兩個等邊三角形,三個角對應(yīng)相等,但邊長不一定相等,所以不一定是全等三角形,故B選項正確;C、全等三角形的形狀相同,說法正確,故C選項錯誤;D、全等三角形的對應(yīng)邊相等,說法正確,故D選項錯誤.故選B.【考點】本題考查了全等三角形的定義與性質(zhì),能夠完全重合的兩個三角形叫做全等三角形,即形狀相同、大小相等兩個三角形叫做全等三角形;全等三角形的對應(yīng)邊相等,對應(yīng)角相等.二、填空題1、或或【解析】【分析】根據(jù)全等三角形的判定即可求解.【詳解】解:①根據(jù)定理,即,可得;②根據(jù)定理,即,可得;③若,則,則根據(jù)定理,即可得;綜上所述,添加一個適當(dāng)?shù)臈l件:或或,故答案為:或或.(答案不唯一)【考點】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解題的關(guān)鍵.2、70【解析】【分析】先利用HL證明△ABE≌△CBF,可證∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【詳解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案為70.【考點】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.3、27【解析】【詳解】∵BE⊥AC,AD=CD,∴AB=CB,即△ABC為等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°.故答案是:27.4、2【解析】【分析】延長BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進(jìn)而可得BD與MN的數(shù)量關(guān)系即可求解.【詳解】解:如圖,延長BD到E,使DE=BD,連接AE,∵點D是AC的中點,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).5、8cm【解析】【分析】先求,推導(dǎo)出,再求出,,根據(jù)ASA證明,即可得出答案.【詳解】∵,,∴,∴,∴,∵,,∴,在△BFD和△ACD中,∴(ASA),∴cm故答案為:8cm【考點】本題考查了全等三角形的性質(zhì)和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等.6、1【解析】【分析】先根據(jù)三角形面積公式計算出DE=

1,再根據(jù)角平分線的性質(zhì)得到點D到AB和AC的距離相等,然后利用三角形的面積公式計算△ADC的面積.【詳解】DE⊥AB,S△ABD

DE

×

AB

=

2,

DE==1,AD是△ABC的角平分線,點D到AB和AC的距離相等,點D到AC的距離為1,S△ADC

=×2×1=

1.故答案為:1.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,屬于基礎(chǔ)題,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.7、2【解析】【分析】根據(jù)HL證明,可得,根據(jù)即可求解.【詳解】解:AB⊥AD,CE⊥BD,,在與中,,,AD=5,CD=7,,BD=CD=7,故答案為:2【考點】本題考查了全等三角形的性質(zhì)與判定,掌握HL證明三角形全等是解題的關(guān)鍵.8、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點】本題考查了平行線的判定定理以及角平分線的定義,解題的關(guān)鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.9、【解析】【分析】過點D分別作DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)表示出DE的長度,進(jìn)而得到DF的長度,然后即可求出的值.【詳解】如圖,過點D分別作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案為:.【考點】此題考查了角平分線的性質(zhì)定理,三角形面積的表示方法,解題的關(guān)鍵是根據(jù)題意正確作出輔助線.10、1【解析】【分析】先證明△ACD≌△CBE,再求出DE的長,解決問題.【詳解】解:∵BE⊥CE于E,AD⊥CE于D∴∵∴∵∴∴,∴.故答案為:1【考點】此題考查三角形全等的判定和性質(zhì),掌握再全等三角形的判定和性質(zhì)是解題的關(guān)鍵.三、解答題1、見解析【解析】【分析】先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點,即可.【詳解】解:先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點,連接,即為所求,如圖所示:【考點】本題考查了復(fù)雜作圖,利用了作一個角等于已知角,作線段等于已知線段,是基本作圖,需熟練掌握.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.2、證明見解析.【解析】【分析】延長CE、BA交于F,根據(jù)角邊角定理,證明△BEF≌△BEC,進(jìn)而得到CF=2CE的關(guān)系.再證明∠ACF=∠1,根據(jù)角邊角定理證明△ACF≌△ABD,得到BD=CF,至此問題得解.【詳解】證明:分別延長BA,CE交于點F.∵BE⊥CE,∴∠BEF=∠BEC=90°.又∵∠1=∠2,BE=BE,∴△BEF≌△BEC(ASA),∴CE=FE=CF.∵∠1+∠F=90°,∠ACF+∠F=90°,∴∠1=∠AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論