版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點F,連接BE.當AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°2、如圖,在中,,的平分線交于點E,于點D,若的周長為12,,則的周長為(
)A.9 B.8 C.7 D.63、如圖為了測量B點到河對面的目標A之間的距離,在B點同側(cè)選擇了一點C,測得∠ABC=65°,∠ACB=35°,然后在M處立了標桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測得MB的長就是A,B兩點間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4、如圖,在△ABC和△DEF中,已知AB=DE,BC=EF,根據(jù)(SAS)判定△ABC≌△DEF,還需的條件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三個均可以5、如圖,B,C,E,F(xiàn)四點在一條直線上,下列條件能判定△ABC與△DEF全等的是(
)A.AB∥DE,∠A=∠D,BE=CF B.AB∥DE,AB=DE,AC=DFC.AB∥DE,AC=DF,BE=CF D.AB∥DE,AC∥DF,∠A=∠D第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,點D是AC的中點,分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.2、如圖,在與中,,,,若,則的度數(shù)為________.3、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.4、如圖,已知AC與BF相交于點E,ABCF,點E為BF中點,若CF=8,AD=5,則BD=_____.5、如圖,點B、E、C、F在同一條直線上,AB∥DE,AB=DE,∠A=∠D,BF=10,BC=6,則EC=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,∠ABC=90°,AB=CB,點E在邊BC上,點F在邊AB的延長線上,BE=BF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).2、如圖,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點E.求證:BD=2CE.3、如圖,在中,是邊上的一點,,平分,交邊于點,連接.(1)求證:;(2)若,,求的度數(shù).4、如圖,D是△ABC的邊AC上一點,點E在AC的延長線上,ED=AC,過點E作EF∥AB,并截取EF=AB,連接DF.求證:DF=CB.5、如圖,是邊長為1的等邊三角形,,,點,分別在,上,且,求的周長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問題.2、D【解析】【分析】通過證明得到、,的周長,即可求解.【詳解】解:∵平分∴,又∵∴又∵∴(AAS)∴、,的周長為,故選:D,【考點】此題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定方法與性質(zhì),以及線段之間的等量關(guān)系.3、D【解析】【分析】利用全等三角形的判定方法進行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)三角形全等的判定中的SAS,即兩邊夾角.已知兩條邊相等,只需要它們的夾角相等即可.【詳解】要使兩三角形全等,已知AB=DE,BC=EF,要用SAS判斷,還差夾角,即∠B=∠E.故選:B.【考點】本題考查了三角形全等的判定方法.三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主.5、A【解析】【分析】根據(jù)全等三角形的判定條件逐一判斷即可.【詳解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合題意;B、∵,∴,再由,不可以利用SSA證明兩個三角形全等,故B不符合題意;C、∵,∴,再由,不可以利用SSA證明兩個三角形全等,故C不符合題意;D、∵,∴,,再由,不可以利用AAA證明兩個三角形全等,故D不符合題意;故選A.【考點】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.二、填空題1、2【解析】【分析】延長BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進而可得BD與MN的數(shù)量關(guān)系即可求解.【詳解】解:如圖,延長BD到E,使DE=BD,連接AE,∵點D是AC的中點,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).2、40°【解析】【分析】先利用HL定理證明Rt△ABC≌Rt△DEF,得出∠D的度數(shù),再根據(jù)直角三角形兩銳角互余即可得出的度數(shù).【詳解】解:在Rt△ABC與Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.故答案為:40°.【考點】此題主要考查直角三角形全等的HL定理.理解斜邊和一組直角邊對應(yīng)相等的兩個直角三角形全等是解題關(guān)鍵.3、或110度【解析】【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【考點】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個內(nèi)角和是解答本題的關(guān)鍵.4、3【解析】【分析】利用全等三角形的判定定理和性質(zhì)定理可得結(jié)果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點E為BF中點,∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理,熟練掌握定理是解答此題的關(guān)鍵.5、2【解析】【分析】根據(jù)平行線的性質(zhì)得出∠B=∠DEF,即可利用ASA證明△ABC≌△DEF,根據(jù)全等三角形的性質(zhì)得出BC=EF=6,即可根據(jù)線段的和差得解.【詳解】解:∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴BC=EF,∵BF=10,BC=6,∴EF=6,CF=BF﹣BC=4,∴EC=EF﹣CF=2,故答案為:2.【考點】此題考查了全等三角形的判定與性質(zhì),利用ASA證明△ABC≌△DEF是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)∠ACF的度數(shù)為60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;(2)根據(jù)題意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,進而可以求出∠ACF的度數(shù).【詳解】(1)證明:∵∠ABC=90°,
∴∠ABC=∠CBF=90°.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:∵△ABE≌△CBF,
∴∠BAE=∠BCF,∵∠ABC=90°,AB=CB,∴∠BCA=∠BAC=45°,∵∠CAE=30°,∴∠BAE=15°,∴∠BCF=15°,∵∠ACF=∠BCF+∠ACB,∴∠ACF=15°+45°=60°.答:∠ACF的度數(shù)為60°.【考點】本題主要考查全等三角形的判定與性質(zhì),解此題的關(guān)鍵在于熟練掌握全等三角形的判定方法.2、證明見解析.【解析】【分析】延長CE、BA交于F,根據(jù)角邊角定理,證明△BEF≌△BEC,進而得到CF=2CE的關(guān)系.再證明∠ACF=∠1,根據(jù)角邊角定理證明△ACF≌△ABD,得到BD=CF,至此問題得解.【詳解】證明:分別延長BA,CE交于點F.∵BE⊥CE,∴∠BEF=∠BEC=90°.又∵∠1=∠2,BE=BE,∴△BEF≌△BEC(ASA),∴CE=FE=CF.∵∠1+∠F=90°,∠ACF+∠F=90°,∴∠1=∠ACF.又∵AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE【考點】本題考查了全等三角形的判定與性質(zhì).解題的關(guān)鍵是恰當添加輔助線,構(gòu)造全等三角形,將所求問題轉(zhuǎn)化為全等三角形內(nèi)邊間的關(guān)系來解決.3、(1)見解析(2)50°【解析】【分析】(1)根據(jù)平分,可得,即可求證;(2)根據(jù)全等三角形的性質(zhì)可得,再由三角形外角的性質(zhì),即可求解.(1)明:∵平分,∴,在和中,∵,∴;(2)解:∵,∴,∵,∴.【考點】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.4、證明過程見解析【解析】【分析】根據(jù)EF∥AB,得到,再根據(jù)已知條件證明,即可得解;【詳解】∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基層衛(wèi)生隊伍培訓制度
- 培訓中心安全預(yù)案制度
- 司機照管員培訓制度
- 放射人員培訓管理制度
- aeo認證企業(yè)內(nèi)部培訓制度
- 制定專業(yè)培訓工作制度
- 測量人員培訓管理制度
- 煤礦自主培訓管理制度
- 部門內(nèi)部培訓管理制度
- 安全培訓后勤保障制度
- 二氧化硅氣凝膠的制備技術(shù)
- 湖南省岳陽市平江縣2024-2025學年高二上學期期末考試語文試題(解析版)
- 2024-2025學年湖北省武漢市江漢區(qū)七年級(下)期末數(shù)學試卷
- 常規(guī)體檢指標講解
- 建筑工程生產(chǎn)管理培訓
- 新人教版高中數(shù)學必修第二冊-第八章 立體幾何初步 章末復(fù)習【課件】
- 倉庫物料效期管理制度
- GB/T 157-2025產(chǎn)品幾何技術(shù)規(guī)范(GPS)圓錐的錐度與錐角系列
- T/CCT 017-2024中低溫煤焦油
- 電子公司生產(chǎn)部年終工作總結(jié)
- ISO27001:2022信息安全管理體系全套文件+表單
評論
0/150
提交評論