2025年山東省禹城市中考數學考試黑鉆押題及參考答案詳解AB卷_第1頁
2025年山東省禹城市中考數學考試黑鉆押題及參考答案詳解AB卷_第2頁
2025年山東省禹城市中考數學考試黑鉆押題及參考答案詳解AB卷_第3頁
2025年山東省禹城市中考數學考試黑鉆押題及參考答案詳解AB卷_第4頁
2025年山東省禹城市中考數學考試黑鉆押題及參考答案詳解AB卷_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省禹城市中考數學考試黑鉆押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.42、往直徑為78cm的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm3、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉90°,得到,則點的坐標為(

).A. B.C. D.4、在一個不透明的口袋中裝有3張完全相同的卡片,卡片上面分別寫有數字,0,2,從中隨機抽出兩張不同卡片,則下列判斷正確的是()A.數字之和是0的概率為0 B.數字之和是正數的概率為C.卡片上面的數字之和是負數的概率為 D.數字之和分別是負數、0、正數的概率相同5、關于x的一元二次方程根的情況,下列說法正確的是(

)A.有兩個不相等的實數根 B.有兩個相等的實數根C.無實數根 D.無法確定二、多選題(5小題,每小題3分,共計15分)1、下列圖形中,是中心對稱圖形的是(

)A. B.C. D.2、如圖,AB是的直徑,C是上一點,E是△ABC的內心,,延長BE交于點F,連接CF,AF.則下列結論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則3、下列命題正確的是(

)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦4、下列說法正確的是(

)A.圓是軸對稱圖形,它有無數條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧5、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、為了落實“雙減”政策,朝陽區(qū)一些學校在課后服務時段開設了與冬奧會項目冰壺有關的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內滑行的路徑MN的長度為______cm.2、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.3、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.4、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.5、如圖,是的內接正三角形,點是圓心,點,分別在邊,上,若,則的度數是____度.四、簡答題(2小題,每小題10分,共計20分)1、已知關于的二次函數.(1)求證:不論為何實數,該二次函數的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數的圖象上,直接寫出與的大小關系;(3)若將拋物線沿軸翻折得到新拋物線,當時,新拋物線對應的函數有最小值3,求的值.2、如圖,已知拋物線的頂點坐標為M,與x軸相交于A,B兩點(點B在點A的右側),與y軸相交于點C.(1)用配方法將拋物線的解析式化為頂點式:(),并指出頂點M的坐標;(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標;(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側),求證:直線MP是⊙N的切線.五、解答題(4小題,每小題10分,共計40分)1、已知線段AB,用平移、旋轉、軸對稱畫出一個以AB為一邊,一個內角是30°的菱形.(不寫畫法,保留作圖痕跡).2、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.3、已知關于的一元二次方程有實數根.(1)求的取值范圍.(2)若該方程的兩個實數根為、,且,求的值.4、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當點P在射線AB上運動時,試探求線段AB,PB,PF之間的數量關系,并給出證明.-參考答案-一、單選題1、C【分析】先設半徑為r,再根據弧長公式建立方程,解出r即可【詳解】設半徑為r,則周長為2πr,120°所對應的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關鍵.2、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.3、A【解析】【分析】根據網格結構作出旋轉后的圖形,然后根據平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網格結構,作出圖形是解題的關鍵.4、A【分析】列樹狀圖,得到共有6種等可能的情況,和為正數的有4種情況,和為負數的有2種情況,依次判斷即可.【詳解】解:列樹狀圖如下:共有6種等可能的情況,和為正數的有4種情況,和為負數的有2種情況,A.數字之和是0的概率為0,故該項符合題意;B.數字之和是正數的概率為,故該項不符合題意;C.卡片上面的數字之和是負數的概率為,故該項不符合題意;D.數字之和分別是負數、0、正數的概率不相同,故該項不符合題意;故選:A.【點睛】此題考查了列樹狀圖求事件的概率,概率的計算公式,正確列出樹狀圖解答是解題的關鍵.5、A【解析】【分析】先計算判別式,再進行配方得到△=(k-1)2+4,然后根據非負數的性質得到△>0,再利用判別式的意義即可得到方程總有兩個不相等的實數根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個不相等的實數根.故選:A.【考點】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數根;②當△=0時,方程有兩個相等的實數根;③當△<0時,方程無實數根.上面的結論反過來也成立.二、多選題1、BD【解析】【分析】根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,進而判斷得出答案.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不符合題意;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不合題意;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意.故選:BD.【考點】本題考查的是中心對稱圖形的概念,把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.2、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內心性質,等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關鍵.3、ABD【解析】【分析】根據垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關鍵.4、ABD【解析】【分析】根據圓的相關知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎題.5、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關性質的綜合應用,在本題中借用切線的性質,求得相應角的度數是解題的關鍵.三、填空題1、【分析】如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據切線的性質定理和垂徑定理求解即可.【詳解】解:如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質定理、垂徑定理、勾股定理,熟練掌握切線的性質和垂徑定理是解答的關鍵.2、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關鍵是把不規(guī)則圖形面積通過割補轉化為規(guī)則圖形的面積計算.3、5【分析】先根據垂徑定理求出AC的長,設⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.4、40°度【分析】直接根據圓周角定理即可得出結論.【詳解】解:與是同弧所對的圓心角與圓周角,,.故答案為:.【點睛】本題考查的是圓周角定理,解題的關鍵是熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、120【解析】【分析】本題可通過構造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據角的互換結合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據等角的互換將所求問題進行轉化,構造輔助線是本題難點,全等以及垂徑定理的應用在圓綜合題目極為常見,圓心角、弧、圓周角的關系需熟練掌握.四、簡答題1、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數的對稱軸為:直線,利用當拋物線開口向上時,誰離對稱軸遠誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數關系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數,方程有兩個不相等的實數根∴無論為何實數,該二次函數的圖象與軸總有兩個公共點(2)解:二次函數的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠對應的函數值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數解析式為∴該拋物線的對稱軸為直線①若,即,則當時,有最小值∴解得,∵∴②若,即,則當時,有最小值-1不合題意,舍去③若,,則當時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數的最值情況、根據對稱軸與取值范圍的位置關系來確定二次函數的最值是解本題的關鍵.2、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉化為頂點式,然后根據二次函數的性質求出拋物線的頂點坐標;(2)連接BC,則BC與對稱軸的交點為R,此時CR+AR的值最小;先求出點A、B、C的坐標,再利用待定系數法求出直線BC的解析式,進而求出其最小值和點R的坐標;(3)設點P坐標為(x,).根據NPAB=,列出方程,解方程得到點P坐標,再計算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點式為:,頂點M的坐標是(,);(2)∵,∴當y=0時,,解得x=1或6,∴A(1,0),B(6,0),∵x=0時,y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點為R,連接AR,則CR+AR=CR+BR=BC,根據兩點之間線段最短可知此時CR+AR的值最小,最小值為BC==.設直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點坐標為(,);(3)設點P坐標為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項得,,得:,整理得:,解得(與A重合,舍去),,(在對稱軸的右側,舍去),(與B重合,舍去),∴點P坐標為(2,2).∵M(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點P在⊙N上,∴直線MP是⊙N的切線.考點:1.二次函數綜合題;2.最值問題;3.切線的判定;4.壓軸題.五、解答題1、見解析【分析】把線段AB繞點A逆時針旋轉30°得到線段AD,作直線BD,以直線BD為對稱軸,分別作AB、AD的軸對稱圖形,即可得到所求的菱形ABCD.【詳解】解:如圖所示:菱形ABCD即為所求.【點睛】本題主要考查了菱形的性質、旋轉的性質、軸對稱的性質等知識點,理解菱形的性質是解答本題的關鍵.2、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據圓周角定理可得,然后根據等腰三角形的判定即可得證;(2)連接,并延長交于點,連接,過作于點,先根據線段垂直平分線的判定與性質可得,再根據線段的和差、勾股定理可得,然后根據直角三角形全等的判定定理證出,根據全等三角形的性質可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點,連接,過作于點,,,是的垂直平分線,,,,,在和中,,,,設,則,在中,,即,解得,在中,,即的半徑為.【點睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質、勾股定理、垂徑定理等知識點,較難的是題(2),通過作輔助線,構造全等三角形和直角三角形是解題關鍵.3、(1).(2).【解析】【分析】(1)根據方程的系數結合根的判別式△≥0,即可得出關于m的一元一次不等式,解之即可得出m的取值范圍;(2)由根與系數的關系可得出x1+x2=6,x1x2=4m+1,結合|x1-x2|=4可得出關于m的一元一次方程,解之即可得出m的值.【詳解】(1)∵關于x的一元二次方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論