版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學上冊《全等三角形》單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、圖中的小正方形邊長都相等,若,則點Q可能是圖中的(
)A.點D B.點C C.點B D.點A2、如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為(
)A. B. C.10 D.83、如圖,在梯形中,,,,那么下列結論不正確的是()A. B.C. D.4、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數等于()A.148° B.140° C.135° D.128°5、如圖,若,則的理由是(
)A.SAS B.AAS C.ASA D.HL6、如圖,AD是的角平分線,,垂足為F,,和的面積分別為60和35,則的面積為A.25 B. C. D.7、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結CD,將線段CD繞點C按逆時針方向旋轉90°得到線段CE,連結DE交BC于點F,連接BE.當AD=BF時,∠BEF的度數是()A.45° B.60° C.62.5° D.67.5°8、下列說法正確的是(
)A.形狀相同的兩個三角形全等 B.面積相等的兩個三角形全等C.完全重合的兩個三角形全等 D.所有的等邊三角形全等9、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結論有(
)個A.2 B.3 C.4 D.510、下列說法正確的是(
)A.兩個長方形是全等圖形 B.形狀相同的兩個三角形全等C.兩個全等圖形面積一定相等 D.所有的等邊三角形都是全等三角形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,△ABC中,AB=BC,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF,若∠BAE=25°,則∠ACF=__________度.2、如圖,,若,則到的距離為_________.3、如圖,在中,,AD是的角平分線,過點D作,若,則______.4、如圖,平分,.填空:因為平分,所以________.從而________.因此________.5、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.6、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.7、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.8、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.9、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.10、如圖,小明與小紅玩蹺蹺板游戲,如果蹺蹺板的支點O(即蹺蹺板的中點)至地面的距離是50cm,當小紅從水平位置CD下降30cm時,這時小明離地面的高度是___cm.三、解答題(5小題,每小題6分,共計30分)1、已知:RtABC中,∠B=90°,D是BC上一點,DF⊥BC交AC于點H,且DF=BC,FG⊥AC交BC于點E.求證:AB=DE.2、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.3、如圖,在中,,BD是的平分線,于點E,點F在BC上,連接DF,且.(1)求證:;(2)若,,求AB的長.4、(2019秋?九龍坡區(qū)校級月考)如圖.在四邊形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分別是邊BC、CD延長線上的點,且∠EAF∠BAD,求證:EF=BE﹣FD.5、【問題解決】(1)已知△ABC中,AB=AC,D,A,E三點都在直線l上,且有∠BDA=∠AEC=∠BAC.如圖①,當∠BAC=90°時,線段DE,BD,CE的數量關系為:______________;【類比探究】(2)如圖②,在(1)的條件下,當0°<∠BAC<180°時,線段DE,BD,CE的數量關系是否變化,若不變,請證明:若變化,寫出它們的關系式;【拓展應用】(3)如圖③,AC=BC,∠ACB=90°,點C的坐標為(-2,0),點B的坐標為(1,2),請求出點A的坐標.-參考答案-一、單選題1、A【解析】【分析】根據全等三角形的判定即可解決問題.【詳解】解:觀察圖象可知△MNP≌△MFD.故選:A.【考點】本題考查全等三角形的判定,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.2、A【解析】【分析】連接AE,由線段垂直平分線的性質得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結AE,設AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關鍵.3、A【解析】【分析】A、根據三角形的三邊關系即可得出A不正確;B、通過等腰梯形的性質結合全等三角形的判定與性質即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質得出AB∥CD,結合角的計算即可得出∠ABC=60°,即C正確;D、由平行線的性質結合等腰三角形的性質即可得出∠DAC=∠CAB,即D正確.綜上即可得出結論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點】本題考查了梯形的性質、平行線的性質、等腰三角形的性質以及全等三角形的判定與性質,解題的關鍵是逐項分析四個選項的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關系得出A不正確即可.4、A【解析】【分析】根據已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內角和可求得∠E,再應用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點】本題考查了全等三角形的判定和性質、三角形外角和、內角和定理,難度不大,但要注意數形結合思想的運用.5、D【解析】【分析】根據兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.6、D【解析】【分析】過點D作DH⊥AC于H,根據角平分線上的點到角的兩邊距離相等可得DF=DH,再利用“HL”證明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根據全等三角形的面積相等列方程求解即可.【詳解】如圖,過點D作于H,是的角平分線,,,在和中,,≌,,在和中,≌,,和的面積分別為60和35,,=12.5,故選D.【考點】本題考查了角平分線上的點到角的兩邊距離相等的性質,全等三角形的判定與性質,熟記掌握相關性質、正確添加輔助線構造出全等三角形是解題的關鍵.7、D【解析】【分析】根據旋轉的性質可得CD=CE和∠DCE=90°,結合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據全等三角形的性質即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數.【詳解】解:由旋轉性質可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉的性質、全等三角形的判定與性質以及等腰三角形的性質,解題的關鍵是熟練運用旋轉的性質找出相等的線段和角,并能準確判定三角形全等,從而利用全等三角形性質解決相應的問題.8、C【解析】【分析】根據全等形的概念:能夠完全重合的兩個圖形叫做全等形,以及全等三角形的判定定理可得答案.【詳解】解:A、形狀相同的兩個三角形全等,說法錯誤,應該是形狀相同且大小也相同的兩個三角形全等;B、面積相等的兩個三角形全等,說法錯誤;C、完全重合的兩個三角形全等,說法正確;D、所有的等邊三角形全等,說法錯誤;故選:C.【考點】此題主要考查了全等圖形,關鍵是掌握全等形的概念.9、B【解析】【分析】①正確.利用三角形內角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯誤.利用反證法,假設成立,推出矛盾即可.④錯誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個顯然與條件矛盾,故③錯誤故選B.【考點】本題考查了角平分線的判定與性質,三角形全等的判定方法,三角形內角和定理,三角形的面積等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考常考題型.10、C【解析】【分析】性質、大小完全相同的兩個圖形是全等形,根據定義解答.【詳解】A、兩個長方形的長或寬不一定相等,故不是全等圖形;B、由于大小不一定相同,故形狀相同的兩個三角形不一定全等;C、兩個全等圖形面積一定相等,故正確;D、所有的等邊三角形大小不一定相同,故不一定是全等三角形;故選:C.【考點】此題考查全等圖形的概念及性質,熟記概念是解題的關鍵.二、填空題1、70【解析】【分析】先利用HL證明△ABE≌△CBF,可證∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【詳解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案為70.【考點】本題考查了等腰直角三角形的性質,全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解題的關鍵.2、4【解析】【分析】過P點作PE⊥OB于E,根據角平分線的性質定理可得PE=PD,即可求解.【詳解】解:如圖,過P點作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點】本題考查了角平分線的性質,熟練掌握角平分線的性質定理是解題的關鍵.3、7【解析】【分析】先利用角平分線性質證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點】本題主要考查了角平分線的性質,解題的關鍵是熟練掌握角平分線的性質.4、
【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內錯角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內錯角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點】本題考查了平行線的判定定理以及角平分線的定義,解題的關鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.5、120【解析】【分析】根基三角形全等的性質得到∠C=∠C′=24°,再根據三角形的內角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點】此題考查三角形全等的性質定理:全等三角形的對應角相等,三角形的內角和定理.6、或110度【解析】【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【考點】本題考查了平行線的性質,全等三角形的判定與性質,以及三角形外角的性質,熟練掌握三角形的外角等于不相鄰的兩個內角和是解答本題的關鍵.7、4:3【解析】【分析】根據角平分線的性質,可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對應邊之比.【詳解】∵AD是△ABC的角平分線,∴設△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.8、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質,解一元一次方程等知識點的理解和掌握,能根據題意得出方程是解此題的關鍵.9、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質、全等三角形的判定與性質、有關面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關鍵.10、80【解析】【分析】根據題意可得:OF=OG,OC=OD,利用已知條件判斷出△OFC≌△OGD,得到CF=DG,即可求出答案.【詳解】∵O是FG和CD的中點∴OF=OG,OC=OD在△OFC和△OGD中∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明離地面的高度=支點到地面的高度+CF=50+30=80cm故答案為80【考點】本題主要考查了三角形全等知識的應用,用數學方法解決生活中有關的實際問題,把實際問題轉換成數學問題,用數學方法加以論證,最后進行求解,是一種十分重要的方法.三、解答題1、見解析【解析】【分析】根據DF⊥BC,FG⊥AC,可得,由對頂角相等可得,進而根據等角的余角相等可得,再利用ASA證明,即可得證.【詳解】證明:DF⊥BC,FG⊥AC,又∵在與中(ASA)AB=DE.【考點】本題考查了三角形全等的性質與判定,等角的余角相等,掌握全等三角形的性質與判定是解題的關鍵.2、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據BD平分∠ABC,可得∠ABD=∠EBD,根據,可判定△ABD≌△EBD,根據全等三角形的性質可得:AD=ED,∠A=∠BED.再根據AD=CD,等量代換可得ED=CD,根據等邊對等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點】本題主要考查全等三角形的判定和性質,解決本題的關鍵是要熟練掌握全等三角形的判定和性質.3、(1)證明見解析(2)10【解析】【分析】(1)由角平分線的性質可得,證明,進而結論得證;(2)證明,可得,根據計算求解即可.(1)證明:(1)∵,∴,又∵BD是的平分線,,∴,,在和中,∵,∴,∴.(2)解:由(1)可得,∴,∵,∴,∴,∵BD是的平分線,∴,在和中,∵,∴,∴,∴,∴AB的長為10.【考點】本題考查了角平分線的性質,三角形全等的判定與性質.解題的關鍵在于熟練掌握角平分線的性質并證明三角形全等.4、詳見解析【解析】【分析】在BE上截取BG,使BG=DF,連接AG.根據SAS證明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根據∠EAF∠BAD,可知∠GAE=∠EAF,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于物聯網的初中校園安全監(jiān)控系統(tǒng)設計與實現教學研究課題報告
- 中小學健康教育課程中人工智能與健康教育游戲化融合的探索教學研究課題報告
- 生成式人工智能在中等職業(yè)學校音樂教學研討中的應用與實施教學研究課題報告
- 初中物理實驗課:風向標原理與風力等級測量的創(chuàng)新教學設計研究教學研究課題報告
- 2026年建筑機器人應用報告
- 2025年工業(yè)廢水零排放污染治理報告
- 醫(yī)療器械追溯系統(tǒng)應用
- 兒科醫(yī)生業(yè)務培訓課件
- 山東省濟寧市梁山京師華宇高中2026年教師招聘備考題庫及一套參考答案詳解
- 2026年安康紫陽縣園區(qū)發(fā)展有限公司招聘(2人)備考題庫完美版
- 酒店經理客房服務質量與管理效率績效評定表
- 普通高中化學課程標準(2025年修訂版)與2020年版對比
- 低空智能-從感知推理邁向群體具身
- 福建國有資產管理公司招聘面試題及答案
- 四川省2025年高職單招職業(yè)技能綜合測試(中職類)電子信息類試卷
- 2025年熔化焊接與熱切割作業(yè)考試題庫及答案
- 2026高考藍皮書高考關鍵能力培養(yǎng)與應用1.批判性與創(chuàng)造性思維能力的基礎知識
- 期末復習知識點清單新教材統(tǒng)編版道德與法治七年級上冊
- 賬務清理合同(標準版)
- 質量互變課件
- 孕婦上班免責協議書
評論
0/150
提交評論