版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、已知圓內(nèi)接正三角形的面積為,則該圓的內(nèi)接正六邊形的邊心距是()A. B. C. D.2、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o3、已知一個(gè)扇形的弧長(zhǎng)為,圓心角是,則它的半徑長(zhǎng)為()A.6cm B.5cm C.4cm D.3cm4、下列語句,錯(cuò)誤的是()A.直徑是弦 B.相等的圓心角所對(duì)的弧相等C.弦的垂直平分線一定經(jīng)過圓心 D.平分弧的半徑垂直于弧所對(duì)的弦5、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°6、已知一個(gè)三角形的三邊長(zhǎng)分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.7、已知點(diǎn)在半徑為8的外,則(
)A. B. C. D.8、已知中,,,,點(diǎn)P為邊AB的中點(diǎn),以點(diǎn)C為圓心,長(zhǎng)度r為半徑畫圓,使得點(diǎn)A,P在⊙C內(nèi),點(diǎn)B在⊙C外,則半徑r的取值范圍是(
)A. B. C. D.9、在平面直角坐標(biāo)系中,⊙O的半徑為2,點(diǎn)A(1,)與⊙O的位置關(guān)系是(
)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定10、如圖所示,MN為⊙O的弦,∠N=52°,則∠MON的度數(shù)為(
)A.38° B.52° C.76° D.104°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長(zhǎng)是_____.2、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是AB的中點(diǎn),以CD為直徑作⊙O,⊙O分別與AC,BC交于點(diǎn)E,F(xiàn),過點(diǎn)F作⊙O的切線FG,交AB于點(diǎn)G,則FG的長(zhǎng)為_____.3、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.4、如圖,正方形ABCD的邊長(zhǎng)為2a,E為BC邊的中點(diǎn),的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為.5、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長(zhǎng)為______.6、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓弧(弧MN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.7、已知直線m與半徑為5cm的⊙O相切于點(diǎn)P,AB是⊙O的一條弦,且,若AB=6cm,則直線m與弦AB之間的距離為_____.8、如圖,從一塊半徑為的圓形鐵皮上剪出一個(gè)圓周角為120°的扇形,如果將剪下來的扇形圍成一個(gè)圓錐,則該圓錐的底面圓的半徑為_________.9、如圖,在中,的半徑為點(diǎn)是邊上的動(dòng)點(diǎn),過點(diǎn)作的一條切線(其中點(diǎn)為切點(diǎn)),則線段長(zhǎng)度的最小值為____.10、如圖,在中,,,,將繞順時(shí)針旋轉(zhuǎn)后得,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得線段,分別以,為圓心,、長(zhǎng)為半徑畫弧和弧,連接,則圖中陰影部分面積是________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,為的直徑,射線交于點(diǎn)F,點(diǎn)C為劣弧的中點(diǎn),過點(diǎn)C作,垂足為E,連接.(1)求證:是的切線;(2)若,求陰影部分的面積.2、正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).(1)如圖①,若點(diǎn)E在上,F(xiàn)是DE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請(qǐng)說明理由;(3)如圖②,若點(diǎn)E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長(zhǎng).3、如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)M,弦交AB于點(diǎn)E,且ME=3,AE=4,AM=5.(1)求證:BC是⊙O的切線;(2)求⊙O的直徑AB的長(zhǎng)度.4、如圖,△ABC內(nèi)接于⊙O,∠A=30°,過圓心O作OD⊥BC,垂足為D.若⊙O的半徑為6,求OD的長(zhǎng).5、已知:如圖,在⊙O中,AB為弦,C、D兩點(diǎn)在AB上,且AC=BD.求證:.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意可以求得半徑,進(jìn)而解答即可.【詳解】因?yàn)閳A內(nèi)接正三角形的面積為,所以圓的半徑為,所以該圓的內(nèi)接正六邊形的邊心距×sin60°=×=1,故選B.【考點(diǎn)】本題考查正多邊形和圓,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.2、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.3、A【解析】【分析】設(shè)扇形半徑為rcm,根據(jù)扇形弧長(zhǎng)公式列方程計(jì)算即可.【詳解】設(shè)扇形半徑為rcm,則=5π,解得r=6cm.故選A.【考點(diǎn)】本題主要考查扇形弧長(zhǎng)公式.4、B【解析】【分析】將每一句話進(jìn)行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對(duì)的弧相等,∴相等的圓心角所對(duì)的弧相等,錯(cuò)誤.C.弦的垂直平分線一定經(jīng)過圓心,正確.D.平分弧的半徑垂直于弧所對(duì)的弦,正確.故答案選:B.【考點(diǎn)】本題考查了圓中弦、圓心角、弧度之間的關(guān)系,熟練掌握該知識(shí)點(diǎn)是本題解題的關(guān)鍵.5、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計(jì)算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計(jì)算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.6、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點(diǎn)A作于D,利用勾股定理可求出AD的長(zhǎng),再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點(diǎn)為,則過點(diǎn)A作于D,設(shè),則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點(diǎn)】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識(shí)點(diǎn),讀懂題意,正確畫出圖形,并求出AD的長(zhǎng)是解題關(guān)鍵.7、A【解析】【分析】根據(jù)點(diǎn)P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點(diǎn)P在圓O的外部,∴點(diǎn)P到圓心O的距離大于8,故選:A.【考點(diǎn)】本題主要考查點(diǎn)與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點(diǎn)與圓的位置關(guān)系的方法.8、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點(diǎn),得CP=,要使點(diǎn)A,P在⊙C內(nèi),r>3,r<4,從而確定r的取值范圍.【詳解】∵點(diǎn)A在⊙C內(nèi),∴r>3,∵點(diǎn)B在⊙C外,∴r<4,∴,故選:D.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.9、A【解析】【分析】根據(jù)點(diǎn)A的坐標(biāo),求出OA=2,根據(jù)點(diǎn)與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點(diǎn)A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點(diǎn)A在⊙O上.故選:A.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,點(diǎn)和圓的位置關(guān)系是由點(diǎn)到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時(shí),點(diǎn)在圓外;(2)當(dāng)時(shí),點(diǎn)在圓上;(3)當(dāng)時(shí),點(diǎn)在圓內(nèi).10、C【解析】【分析】根據(jù)半徑相等得到OM=ON,則∠M=∠N=52°,然后根據(jù)三角形內(nèi)角和定理計(jì)算∠MON的度數(shù).【詳解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故選C.【考點(diǎn)】本題考查了圓的認(rèn)識(shí):掌握與圓有關(guān)的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).二、填空題1、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.2、.【解析】【分析】先利用勾股定理求出AB=10,進(jìn)而求出CD=BD=5,再求出CF=4,進(jìn)而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結(jié)論.【詳解】如圖,在Rt△ABC中,根據(jù)勾股定理得,AB=10,∴點(diǎn)D是AB中點(diǎn),∴CD=BD=AB=5,連接DF,∵CD是⊙O的直徑,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,連接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切線,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案為.【考點(diǎn)】此題主要考查了直角三角形的性質(zhì),勾股定理,切線的性質(zhì),三角形的中位線定理,三角形的面積公式,判斷出FG⊥AB是解本題的關(guān)鍵.3、40【解析】【分析】若要利用∠BAD的度數(shù),需構(gòu)建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點(diǎn)】本題考查了圓周角定理及其推論:同弧所對(duì)的圓周角相等;半圓(?。┖椭睆剿鶎?duì)的圓周角是直角,正確添加輔助線是解題的關(guān)鍵.4、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點(diǎn)】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(經(jīng)過兩個(gè)圓心的直線),垂直平分兩圓的公共弦.注意:在習(xí)題中常常通過公共弦在兩圓之間建立聯(lián)系.5、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點(diǎn)】本題考查的是垂徑定理、勾股定理等知識(shí),熟練掌握垂徑定理,由勾股定理求出CE的長(zhǎng)是解題的關(guān)鍵.6、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長(zhǎng),再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.7、1cm或9cm【解析】【分析】根據(jù)題意:分兩種情況進(jìn)行分析,①當(dāng)AB與直線位于圓心O的同側(cè)時(shí),連接OA,OP交AB于點(diǎn)E;②當(dāng)AB與直線m位于圓心O的異側(cè)時(shí),連接OA’,OP交于點(diǎn)F;結(jié)合圖形利用圓的基本性質(zhì)及勾股定理進(jìn)行求解即可得出結(jié)果.【詳解】解:根據(jù)題意:分兩種情況進(jìn)行分析,①如圖所示,當(dāng)AB與直線位于圓心O的同側(cè)時(shí),連接OA,OP交AB于點(diǎn)E,∵,,∴,,∵直線m為圓O的切線,∴,在中,,∴,②如圖所示,當(dāng)AB與直線m位于圓心O的異側(cè)時(shí),連接OA’,OP交于點(diǎn)F,結(jié)合圖形及①可得,∴PF=PO+OF=5+4=9cm,故答案為:或.【考點(diǎn)】題目主要考查圓的基本性質(zhì)及勾股定理解直角三角形,理解題意,作出相應(yīng)圖形進(jìn)行求解是解題關(guān)鍵.8、【解析】【分析】連接OA,OB,證明△AOB是等邊三角形,繼而求得AB的長(zhǎng),然后利用弧長(zhǎng)公式可以計(jì)算出的長(zhǎng)度,再根據(jù)扇形圍成圓錐底面圓的周長(zhǎng)等于扇形的弧長(zhǎng)即可作答.【詳解】連接OA,OB,則∠BAO=∠BAC==60°,又∵OA=OB,∴△AOB是等邊三角形,∴AB=OA=1,∵∠BAC=120°,∴的長(zhǎng)為:,設(shè)圓錐底面圓的半徑為r故答案為.【考點(diǎn)】本題主要考查了弧長(zhǎng)公式以及扇形弧長(zhǎng)與底面圓周長(zhǎng)相等的知識(shí)點(diǎn),借助等量關(guān)系即可算出底面圓的半徑.9、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時(shí),PQ最短;在中運(yùn)用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長(zhǎng),然后再運(yùn)用等面積法求得OP的長(zhǎng),最后運(yùn)用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當(dāng)OP⊥AB時(shí),如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點(diǎn)】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),此正確作出輔助線、根據(jù)勾股定理確定當(dāng)PO⊥AB時(shí)、線段PQ最短是解答本題的關(guān)鍵.10、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計(jì)算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點(diǎn)】本題考查的是扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)證明見解析;(2).【解析】【分析】(1)連接BF,證明BF//CE,連接OC,證明OC⊥CE即可得到結(jié)論;(2)連接OF,求出扇形FOC的面積即可得到陰影部分的面積.【詳解】(1)連接,是的直徑,,即,,連接,∵點(diǎn)C為劣弧的中點(diǎn),,∵,∵OC是的半徑,∴CE是的切線;(2)連接,,∵點(diǎn)C為劣弧的中點(diǎn),,,,,∴S扇形FOC=,即陰影部分的面積為:.【考點(diǎn)】本題主要考查了切線的判定以及扇形面積的求法,熟練掌握切線的判定定理以及扇形面積的求法是解答此題的關(guān)鍵.2、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點(diǎn)共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計(jì)算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點(diǎn)共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點(diǎn)】本題考查了正方形、圓、等腰三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防安全巡檢記錄管理方案
- 泵站運(yùn)行維護(hù)管理方案
- 溝通力與執(zhí)行力課件
- 建筑物防火隔熱材料應(yīng)用方案
- 安全文明施工管理方案
- 消防設(shè)備故障排查方案
- 人防工程外部配套設(shè)施驗(yàn)收方案
- 外墻泛水處理施工方案
- 護(hù)理三基三嚴(yán)皮試操作考核技巧
- 2026年工程力學(xué)考試模擬題及答案
- 業(yè)務(wù)持續(xù)性與災(zāi)難恢復(fù)模板
- 婦科微創(chuàng)術(shù)后護(hù)理新進(jìn)展
- 工藝類美術(shù)課件
- 2025年小學(xué)蔬菜頒獎(jiǎng)典禮
- MFC2000-6微機(jī)廠用電快速切換裝置說明書
- TCNAS50-2025成人吞咽障礙患者口服給藥護(hù)理學(xué)習(xí)解讀課件
- 專升本演講稿
- 2024低溫低濁水給水處理設(shè)計(jì)標(biāo)準(zhǔn)
- 門窗知識(shí)文字培訓(xùn)課件
- 《房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)》解讀
- 2025年國(guó)資委公務(wù)員面試熱點(diǎn)問題集錦及答案
評(píng)論
0/150
提交評(píng)論