2025年江西省樂(lè)平市中考數(shù)學(xué)達(dá)標(biāo)測(cè)試附答案詳解【模擬題】_第1頁(yè)
2025年江西省樂(lè)平市中考數(shù)學(xué)達(dá)標(biāo)測(cè)試附答案詳解【模擬題】_第2頁(yè)
2025年江西省樂(lè)平市中考數(shù)學(xué)達(dá)標(biāo)測(cè)試附答案詳解【模擬題】_第3頁(yè)
2025年江西省樂(lè)平市中考數(shù)學(xué)達(dá)標(biāo)測(cè)試附答案詳解【模擬題】_第4頁(yè)
2025年江西省樂(lè)平市中考數(shù)學(xué)達(dá)標(biāo)測(cè)試附答案詳解【模擬題】_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省樂(lè)平市中考數(shù)學(xué)達(dá)標(biāo)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、關(guān)于x的一元二次方程根的情況,下列說(shuō)法正確的是(

)A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根C.無(wú)實(shí)數(shù)根 D.無(wú)法確定2、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°3、從下列命題中,隨機(jī)抽取一個(gè)是真命題的概率是()(1)無(wú)理數(shù)都是無(wú)限小數(shù);(2)因式分解;(3)棱長(zhǎng)是的正方體的表面展開(kāi)圖的周長(zhǎng)一定是;(4)弧長(zhǎng)是,面積是的扇形的圓心角是.A. B. C. D.14、下列汽車(chē)標(biāo)志中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.5、下列圖形中,既是中心對(duì)稱圖形也是軸對(duì)稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,是的直徑,,交于點(diǎn),交于點(diǎn),是的中點(diǎn),連接.則下列結(jié)論正確的是(

)A. B. C. D.是的切線2、若關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根分別是,且滿足,則的值不可能為(

)A.或 B. C. D.不存在3、如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到B.點(diǎn)O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+4、如圖,PA、PB是的切線,切點(diǎn)分別為A、B,BC是的直徑,PO交于E點(diǎn),連接AB交PO于F,連接CE交AB于D點(diǎn).下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.5、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點(diǎn)A,連接AO并延長(zhǎng)交⊙O于點(diǎn)B;②以點(diǎn)B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點(diǎn);③連接CO,DO并延長(zhǎng)分別交⊙O于點(diǎn)E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點(diǎn)G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點(diǎn)G B.∠FGA=∠FOAC.點(diǎn)G是線段EF的三等分點(diǎn) D.EF=AF第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,正方形ABCD的邊長(zhǎng)為1,⊙O經(jīng)過(guò)點(diǎn)C,CM為⊙O的直徑,且CM=1.過(guò)點(diǎn)M作⊙O的切線分別交邊AB,AD于點(diǎn)G,H.BD與CG,CH分別交于點(diǎn)E,F(xiàn),⊙O繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個(gè)結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫(xiě)所有正確結(jié)論的序號(hào)).2、如圖,二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),它的對(duì)稱軸為直線x=1,則下列結(jié)論中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一個(gè)根在2,3之間,正確的有_______(填序號(hào)).3、為了落實(shí)“雙減”政策,朝陽(yáng)區(qū)一些學(xué)校在課后服務(wù)時(shí)段開(kāi)設(shè)了與冬奧會(huì)項(xiàng)目冰壺有關(guān)的選修課.如圖,在冰壺比賽場(chǎng)地的一端畫(huà)有一些同心圓作為營(yíng)壘,其中有兩個(gè)圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長(zhǎng)度為_(kāi)_____cm.4、在平面直角坐標(biāo)系中,將點(diǎn)A先向右平移4個(gè)單位,再向下平移6個(gè)單位得到點(diǎn)B,如果點(diǎn)A和點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,那么點(diǎn)A的坐標(biāo)是____________.5、如圖,在中,的半徑為點(diǎn)是邊上的動(dòng)點(diǎn),過(guò)點(diǎn)作的一條切線(其中點(diǎn)為切點(diǎn)),則線段長(zhǎng)度的最小值為_(kāi)___.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該商品每件的銷售價(jià)為60元時(shí),每個(gè)月可銷售300件,若每件的銷售價(jià)每增加1元,則每個(gè)月的銷售量將減少10件.設(shè)該商品每件的銷售價(jià)為x元,每個(gè)月的銷售量為y件.(1)求y與x的函數(shù)表達(dá)式;(2)當(dāng)該商品每件的銷售價(jià)為多少元時(shí),每個(gè)月的銷售利潤(rùn)最大?最大利潤(rùn)是多少?2、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點(diǎn),連接AO,BO,延長(zhǎng)AO交反比例函數(shù)圖象于點(diǎn)C.(1)求一次函數(shù)y1的表達(dá)式與反比例函數(shù)y2的表達(dá)式;(2)當(dāng)y1<y2,時(shí),直接寫(xiě)出自變量x的取值范圍;(3)點(diǎn)P是x軸上一點(diǎn),當(dāng)時(shí),請(qǐng)求出點(diǎn)P的坐標(biāo).五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E在AC上,以AE為直徑的⊙O經(jīng)過(guò)點(diǎn)D.(1)求證:①BC是⊙O的切線;②;(2)若點(diǎn)F是劣弧AD的中點(diǎn),且CE=3,試求陰影部分的面積.2、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點(diǎn)A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時(shí),求k的值;(3)當(dāng)﹣4<x≤m時(shí),y有最大值,求m的值.3、如圖1,拋物線y=ax2+bx+3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為F,點(diǎn)D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PQ⊥x軸交該拋物線于點(diǎn)Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時(shí),求出所有滿足條件的點(diǎn)Q的坐標(biāo).4、用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋海?)

(2)-參考答案-一、單選題1、A【解析】【分析】先計(jì)算判別式,再進(jìn)行配方得到△=(k-1)2+4,然后根據(jù)非負(fù)數(shù)的性質(zhì)得到△>0,再利用判別式的意義即可得到方程總有兩個(gè)不相等的實(shí)數(shù)根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個(gè)不相等的實(shí)數(shù)根.故選:A.【考點(diǎn)】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;②當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;③當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.上面的結(jié)論反過(guò)來(lái)也成立.2、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形中對(duì)角互補(bǔ).解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.3、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】解:(1)無(wú)理數(shù)都是無(wú)限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長(zhǎng)是的正方體的表面展開(kāi)圖的周長(zhǎng)一定是,是真命題,(4)設(shè)扇形半徑為r,圓心角為n,∵弧長(zhǎng)是,則=,則,∵面積是,則=,則360×240,則,則n=3600÷24=150°,故扇形的圓心角是,是假命題,則隨機(jī)抽取一個(gè)是真命題的概率是,故選C.【考點(diǎn)】本題考查了命題的真假,概率,扇形的弧長(zhǎng)和面積,無(wú)理數(shù),因式分解,正方體展開(kāi)圖,知識(shí)點(diǎn)較多,難度一般,解題的關(guān)鍵是運(yùn)用所學(xué)知識(shí)判斷各個(gè)命題的真假.4、C【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.5、A【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、既是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故此選項(xiàng)不符合題意;D、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故此選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題考查中心對(duì)稱圖形和軸對(duì)稱圖形的知識(shí),關(guān)鍵是掌握好中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.二、多選題1、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點(diǎn),得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設(shè)推出不正確.【詳解】解:連接,.是的直徑,(直徑所對(duì)的圓周角是直角),;而在中,,是邊上的中線,選項(xiàng)符合題意);是的直徑,,,,,,選項(xiàng)符合題意),是的中位線,即:,是的中點(diǎn),是的中位線,,.是的切線選項(xiàng)符合題意);只有當(dāng)是等腰直角三角形時(shí),,故選項(xiàng)錯(cuò)誤,不符合題意,故選:BCD.【考點(diǎn)】本題考查的知識(shí)點(diǎn)是切線的判定與性質(zhì)、等腰三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是運(yùn)用等腰三角形性質(zhì)及圓周角定理及切線性質(zhì)作答.2、ABD【解析】【分析】利用可得,從而得到,解出k結(jié)合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個(gè)實(shí)數(shù)根分別是,,∴,∵,∴,即,解得:,當(dāng)時(shí),,∴此時(shí)方程無(wú)實(shí)數(shù)根,不合題意,舍去,當(dāng)時(shí),,∴此時(shí)方程有兩個(gè)不相等實(shí)數(shù)根,∴的值為.故選:ABD.【考點(diǎn)】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,熟練掌握若一元二次方程的兩個(gè)實(shí)數(shù)根分別是,,則是解題的關(guān)鍵.3、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點(diǎn)O與O′的距離為4,故符合題意;故符合題意;如圖,過(guò)作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,同理可得:故符合題意;故選:【考點(diǎn)】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.4、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進(jìn)而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進(jìn)而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進(jìn)而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯(cuò)誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點(diǎn)】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識(shí),解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個(gè)知識(shí)點(diǎn)之間的融會(huì)貫通.5、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點(diǎn)G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點(diǎn)G是線段EF的三等分點(diǎn),故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯(cuò)誤,故答案為:ABC.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識(shí),解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.三、填空題1、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過(guò)三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個(gè)結(jié)論;運(yùn)用對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點(diǎn)P,連接PA,則PA+PC≥AC,當(dāng)PC最大時(shí),PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時(shí),PA最小,計(jì)算即可.【詳解】∵GH是⊙O的切線,M為切點(diǎn),且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無(wú)法確定HD=2BG,故①錯(cuò)誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對(duì)角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上,故③正確;∵正方形ABCD的邊長(zhǎng)為1,∴=1=,∠GAH=90°,AC=取GH的中點(diǎn)P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時(shí),有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時(shí),PA最小,∵直徑是圓中最大的弦,∴PC=1時(shí),PA最小,∴當(dāng)A,P,C三點(diǎn)共線時(shí),且PC最大時(shí),PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點(diǎn)睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點(diǎn)共圓,正方形的性質(zhì),熟練掌握?qǐng)A的性質(zhì),靈活運(yùn)用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.2、①②④【解析】【分析】由二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),即可判斷①;由拋物線的對(duì)稱軸為直線x=1,即可判斷②;拋物線與x軸的一個(gè)交點(diǎn)在-1到0之間,拋物線對(duì)稱軸為直線x=1,即可判斷④,由拋物線開(kāi)口向下,得到a<0,再由當(dāng)x=-1時(shí),,即可判斷③.【詳解】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),∴c=3,故①正確;∵拋物線的對(duì)稱軸為直線x=1,∴,即,故②正確;∵拋物線與x軸的一個(gè)交點(diǎn)在-1到0之間,拋物線對(duì)稱軸為直線x=1,∴拋物線與x軸的另一個(gè)交點(diǎn)在2到3之間,故④正確;∵拋物線開(kāi)口向下,∴a<0,∵當(dāng)x=-1時(shí),,∴即,故③錯(cuò)誤,故答案為:①②④.【考點(diǎn)】本題主要考查了二次函數(shù)圖像的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握二次函數(shù)圖像的性質(zhì).3、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長(zhǎng)度為cm,故答案為:.【點(diǎn)睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.4、【解析】【分析】先按題目要求對(duì)A、B點(diǎn)進(jìn)行平移,再根據(jù)原點(diǎn)對(duì)稱的特征:橫縱坐標(biāo)互為相反數(shù)進(jìn)行列方程,求解.【詳解】設(shè),向右平移4個(gè)單位,再向下平移6個(gè)單位得到∵A、B關(guān)于原點(diǎn)對(duì)稱,∴,,解得,,∴故答案為:【考點(diǎn)】本題考查點(diǎn)的平移和原點(diǎn)對(duì)稱的性質(zhì),掌握這些是解題關(guān)鍵.5、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時(shí),PQ最短;在中運(yùn)用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長(zhǎng),然后再運(yùn)用等面積法求得OP的長(zhǎng),最后運(yùn)用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當(dāng)OP⊥AB時(shí),如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點(diǎn)】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),此正確作出輔助線、根據(jù)勾股定理確定當(dāng)PO⊥AB時(shí)、線段PQ最短是解答本題的關(guān)鍵.四、簡(jiǎn)答題1、(1)y=-10x+900;(2)每件銷售價(jià)為70元時(shí),獲得最大利潤(rùn);最大利潤(rùn)為4000元【解析】【分析】(1)根據(jù)等量關(guān)系“利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷量”列出函數(shù)表達(dá)式即可.(2)根據(jù)(1)中列出函數(shù)關(guān)系式,配方后依據(jù)二次函數(shù)的性質(zhì)求得利潤(rùn)最大值.【詳解】解:(1)根據(jù)題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數(shù)表達(dá)式為:y=-10x+900;(2)設(shè)利潤(rùn)為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價(jià)為70元時(shí),獲得最大利潤(rùn);最大利潤(rùn)為4000元.【考點(diǎn)】本題考查的是二次函數(shù)在實(shí)際生活中的應(yīng)用.此題難度不大,解題的關(guān)鍵是理解題意,找到等量關(guān)系,求得二次函數(shù)解析式.2、(1),;(2)當(dāng)y1<y2,時(shí),自變量x的取值范圍為x>8或0<x<2;(3)點(diǎn)P的坐標(biāo)為(3,0)或(-3,0).【解析】【分析】(1)利用待定系數(shù)法確定解析式即可;(2)利用數(shù)形結(jié)合的思想,分析兩個(gè)函數(shù)圖象的位置,根據(jù)交點(diǎn)的橫坐標(biāo)確定滿足條件的解集即可.(3)先利用分割法求出的面積,利用求出的面積,由面積公式列式求解即可.【詳解】解:(1)將,代入中,得解得:∴反比例函數(shù)y2的表達(dá)式為:將,代入中,得:解得:∴一次函數(shù)y1的表達(dá)式為:(2)由圖象可知,當(dāng)時(shí),反比例函數(shù)圖象應(yīng)在一次函數(shù)圖象上方∴自變量x的取值范圍為:或(3)設(shè)直線AB與x軸的交點(diǎn)為D,如下圖:∵延長(zhǎng)AO交反比例函數(shù)圖象于點(diǎn)C∴點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱∴設(shè)直線AB交x軸的交點(diǎn)為D將代入∴∴又∵∴即:∴∵點(diǎn)P在x軸上∴或【考點(diǎn)】本題考查待定系數(shù)法求一次函數(shù)與反比例函數(shù)的解析式,通過(guò)圖象交點(diǎn)情況確定滿足條件的自變量取值范圍等知識(shí)點(diǎn),能夠利用數(shù)形結(jié)合思想是解題的關(guān)鍵.五、解答題1、(1)①見(jiàn)解析;②見(jiàn)解析;(2).【分析】(1)①連接OD,由角平分線的性質(zhì)解得,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,證明,繼而由兩直線平行,同旁內(nèi)角互補(bǔ)證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對(duì)應(yīng)邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結(jié)合扇形面積公式解題.【詳解】解:(1)①連接OD,是∠BAC的平分線是⊙O的切線;②連接DE,是⊙O的切線,是直徑(2)連接DE、OD、DF、OF,設(shè)圓的半徑為R,點(diǎn)F是劣弧AD的中點(diǎn),OF是DA中垂線DF=AF,是等邊三角形,四邊形DOAF是菱形,.【點(diǎn)睛】本題考查圓的綜合題,涉及切線的判定與性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、扇形面積等知識(shí),綜合性較強(qiáng),有難度,掌握相關(guān)知識(shí)是解題關(guān)鍵.2、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個(gè)函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對(duì)稱軸方程,分三種情況討論,當(dāng)<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對(duì)稱軸為直線x=2,當(dāng)m<2時(shí),當(dāng)x=m時(shí),y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當(dāng)m≥2時(shí),當(dāng)x=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論