2024-2025學(xué)年牡丹江市東安區(qū)中考數(shù)學(xué)全真模擬試卷含解析_第1頁
2024-2025學(xué)年牡丹江市東安區(qū)中考數(shù)學(xué)全真模擬試卷含解析_第2頁
2024-2025學(xué)年牡丹江市東安區(qū)中考數(shù)學(xué)全真模擬試卷含解析_第3頁
2024-2025學(xué)年牡丹江市東安區(qū)中考數(shù)學(xué)全真模擬試卷含解析_第4頁
2024-2025學(xué)年牡丹江市東安區(qū)中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年牡丹江市東安區(qū)中考數(shù)學(xué)全真模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,,結(jié)論:①;②;③;④,其中正確的是有()A.1個 B.2個 C.3個 D.4個2.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體3.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過點(diǎn)(﹣2,1) B.圖象在第二、四象限C.當(dāng)x<0時,y隨著x的增大而增大 D.當(dāng)x>﹣1時,y>24.若等式(-5)□5=–1成立,則□內(nèi)的運(yùn)算符號為()A.+ B.– C.× D.÷5.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.6.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA7.如圖是由5個相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.8.如圖直線y=mx與雙曲線y=交于點(diǎn)A、B,過A作AM⊥x軸于M點(diǎn),連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.49.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側(cè)面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm10.2017年新設(shè)了雄安新區(qū),周邊經(jīng)濟(jì)受到刺激綜合實(shí)力大幅躍升,其中某地區(qū)生產(chǎn)總值預(yù)計可增長到305.5億元其中305.5億用科學(xué)記數(shù)法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×1011二、填空題(本大題共6個小題,每小題3分,共18分)11.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.12.若一次函數(shù)y=-2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是_________.(寫出一個即可)13.已知線段a=4,b=1,如果線段c是線段a、b的比例中項(xiàng),那么c=_____.14.如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點(diǎn)出發(fā)的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=_________.15.下面是甲、乙兩人10次射擊成績(環(huán)數(shù))的條形統(tǒng)計圖,通常新手的成績不太確定,根據(jù)圖中的信息,估計這兩人中的新手是_____.16.如圖,在中,,,為邊的高,點(diǎn)在軸上,點(diǎn)在軸上,點(diǎn)在第一象限,若從原點(diǎn)出發(fā),沿軸向右以每秒1個單位長的速度運(yùn)動,則點(diǎn)隨之沿軸下滑,并帶動在平面內(nèi)滑動,設(shè)運(yùn)動時間為秒,當(dāng)?shù)竭_(dá)原點(diǎn)時停止運(yùn)動連接,線段的長隨的變化而變化,當(dāng)最大時,______.當(dāng)?shù)倪吪c坐標(biāo)軸平行時,______.三、解答題(共8題,共72分)17.(8分)某校九年級數(shù)學(xué)測試后,為了解學(xué)生學(xué)習(xí)情況,隨機(jī)抽取了九年級部分學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計,得到相關(guān)的統(tǒng)計圖表如下.成績/分120﹣111110﹣101100﹣9190以下成績等級ABCD請根據(jù)以上信息解答下列問題:(1)這次統(tǒng)計共抽取了名學(xué)生的數(shù)學(xué)成績,補(bǔ)全頻數(shù)分布直方圖;(2)若該校九年級有1000名學(xué)生,請據(jù)此估計該校九年級此次數(shù)學(xué)成績在B等級以上(含B等級)的學(xué)生有多少人?(3)根據(jù)學(xué)習(xí)中存在的問題,通過一段時間的針對性復(fù)習(xí)與訓(xùn)練,若A等級學(xué)生數(shù)可提高40%,B等級學(xué)生數(shù)可提高10%,請估計經(jīng)過訓(xùn)練后九年級數(shù)學(xué)成績在B等級以上(含B等級)的學(xué)生可達(dá)多少人?18.(8分)已知:如圖,在正方形ABCD中,點(diǎn)E、F分別是AB、BC邊的中點(diǎn),AF與CE交點(diǎn)G,求證:AG=CG.19.(8分)如圖,在△OAB中,OA=OB,C為AB中點(diǎn),以O(shè)為圓心,OC長為半徑作圓,AO與⊙O交于點(diǎn)E,OB與⊙O交于點(diǎn)F和D,連接EF,CF,CF與OA交于點(diǎn)G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.20.(8分)如圖二次函數(shù)的圖象與軸交于點(diǎn)和兩點(diǎn),與軸交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象經(jīng)過、求二次函數(shù)的解析式;寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;若直線與軸的交點(diǎn)為點(diǎn),連結(jié)、,求的面積;21.(8分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為______;請補(bǔ)全條形統(tǒng)計圖;該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動項(xiàng)目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.22.(10分)如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),點(diǎn)E是AC的中點(diǎn),過點(diǎn)A作⊙O的切線交BD的延長線于點(diǎn)F.連接AE并延長交BF于點(diǎn)C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.23.(12分)在平面直角坐標(biāo)系xOy中,點(diǎn)C是二次函數(shù)y=mx2+4mx+4m+1的圖象的頂點(diǎn),一次函數(shù)y=x+4的圖象與x軸、y軸分別交于點(diǎn)A、B.(1)請你求出點(diǎn)A、B、C的坐標(biāo);(2)若二次函數(shù)y=mx2+4mx+4m+1與線段AB恰有一個公共點(diǎn),求m的取值范圍.24.(2017四川省內(nèi)江市)小明隨機(jī)調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:(1)這項(xiàng)被調(diào)查的總?cè)藬?shù)是多少人?(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計圖;(3)如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)已知的條件,可由AAS判定△AEB≌△AFC,進(jìn)而可根據(jù)全等三角形得出的結(jié)論來判斷各選項(xiàng)是否正確.【詳解】解:如圖:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正確)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正確)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正確)由于條件不足,無法證得②CD=DN;故正確的結(jié)論有:①③④;故選C.此題主要考查的是全等三角形的判定和性質(zhì),做題時要從最容易,最簡單的開始,由易到難.2、A【解析】【分析】根據(jù)三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點(diǎn)睛】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.3、D【解析】

A選項(xiàng):把(-2,1)代入解析式得:左邊=右邊,故本選項(xiàng)正確;

B選項(xiàng):因?yàn)?2<0,圖象在第二、四象限,故本選項(xiàng)正確;

C選項(xiàng):當(dāng)x<0,且k<0,y隨x的增大而增大,故本選項(xiàng)正確;

D選項(xiàng):當(dāng)x>0時,y<0,故本選項(xiàng)錯誤.

故選D.4、D【解析】

根據(jù)有理數(shù)的除法可以解答本題.【詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內(nèi)的運(yùn)算符號為÷,故選D.考查有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計算方法.5、A【解析】【分析】根據(jù)正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個數(shù)依次為2,1,如圖所示:故選A.【點(diǎn)睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.6、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.本題主要考查了全等三角形的判定,關(guān)鍵是掌握全等三角形的判定定理.7、A【解析】

根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個小正方形,第二層左邊有1個小正方形.故選A.本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.8、B【解析】

此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點(diǎn)關(guān)于原點(diǎn)對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點(diǎn).9、B【解析】

由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運(yùn)用勾股定理即可求解圓錐的高.【詳解】解:設(shè)圓錐母線長為Rcm,則2π=,解得R=3cm;設(shè)圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.本題考查了圓錐的概念和弧長的計算.10、C【解析】解:305.5億=3.055×1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:把這兩個方程相加可得1a-1b=9,兩邊同時除以1可得a-b=1.考點(diǎn):整體思想.12、-1【解析】試題分析:根據(jù)一次函數(shù)的圖象經(jīng)過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,∴k<1,b<1.考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系13、1【解析】

根據(jù)比例中項(xiàng)的定義,列出比例式即可得出中項(xiàng),注意線段不能為負(fù).【詳解】根據(jù)比例中項(xiàng)的概念結(jié)合比例的基本性質(zhì),得:比例中項(xiàng)的平方等于兩條線段的乘積.則c1=4×1,c=±1,(線段是正數(shù),負(fù)值舍去),故c=1.故答案為1.本題考查了比例線段;理解比例中項(xiàng)的概念,這里注意線段不能是負(fù)數(shù).14、或【解析】

根據(jù)裁開折疊之后平行四邊形的面積可得CD的長度為2+4或2+.【詳解】如圖①,當(dāng)四邊形ABCE為平行四邊形時,作AE∥BC,延長AE交CD于點(diǎn)N,過點(diǎn)B作BT⊥EC于點(diǎn)T.∵AB=BC,∴四邊形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.設(shè)BT=x,則CN=x,BC=EC=2x.∵四邊形ABCE面積為2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2+,∴CD=AD=2AN=4+2.如圖②,當(dāng)四邊形BEDF是平行四邊形,∵BE=BF,∴平行四邊形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.設(shè)AB=y(tǒng),則DE=BE=2y,AE=y(tǒng).∵四邊形BEDF的面積為2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=,DE=2,∴AD=AE+DE=2+.綜上所述,CD的值為4+2或2+.考核知識點(diǎn):平行四邊形的性質(zhì),菱形判定和性質(zhì).15、甲.【解析】

根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定,方差越大,數(shù)據(jù)不穩(wěn)定,則為新手.【詳解】∵通過觀察條形統(tǒng)計圖可知:乙的成績更整齊,也相對更穩(wěn)定,∴甲的方差大于乙的方差.故答案為:甲.本題考查的知識點(diǎn)是方差,條形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握方差,條形統(tǒng)計圖.16、4【解析】

(1)由等腰三角形的性質(zhì)可得AD=BD,從而可求出OD=4,然后根據(jù)當(dāng)O,D,C共線時,OC取最大值求解即可;(2)根據(jù)等腰三角形的性質(zhì)求出CD,分AC∥y軸、BC∥x軸兩種情況,根據(jù)相似三角形的判定定理和性質(zhì)定理列式計算即可.【詳解】(1),,當(dāng)O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當(dāng)AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當(dāng)BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,

則當(dāng)t=或時,△ABC的邊與坐標(biāo)軸平行.

故答案為t=或.本題考查的是直角三角形的性質(zhì),等腰三角形的性質(zhì),相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理、靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)1人;補(bǔ)圖見解析;(2)10人;(3)610名.【解析】

(1)用總?cè)藬?shù)乘以A所占的百分比,即可得到總?cè)藬?shù);再用總?cè)藬?shù)乘以A等級人數(shù)所占比例可得其人數(shù),繼而根據(jù)各等級人數(shù)之和等于總?cè)藬?shù)可得D等級人數(shù),據(jù)此可補(bǔ)全條形圖;

(2)用總?cè)藬?shù)乘以(A的百分比+B的百分比),即可解答;

(3)先計算出提高后A,B所占的百分比,再乘以總?cè)藬?shù),即可解答.【詳解】解:(1)本次調(diào)查抽取的總?cè)藬?shù)為15÷=1(人),則A等級人數(shù)為1×=10(人),D等級人數(shù)為1﹣(10+15+5)=20(人),補(bǔ)全直方圖如下:故答案為1.(2)估計該校九年級此次數(shù)學(xué)成績在B等級以上(含B等級)的學(xué)生有1000×=10(人);(3)∵A級學(xué)生數(shù)可提高40%,B級學(xué)生數(shù)可提高10%,∴B級學(xué)生所占的百分比為:30%×(1+10%)=33%,A級學(xué)生所占的百分比為:20%×(1+40%)=28%,∴1000×(33%+28%)=610(人),∴估計經(jīng)過訓(xùn)練后九年級數(shù)學(xué)成績在B以上(含B級)的學(xué)生可達(dá)610名.考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運(yùn)用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、詳見解析.【解析】

先證明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根據(jù)∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【詳解】證明:∵四邊形ABCD是正方形,∴AD=DC,∵E、F分別是AB、BC邊的中點(diǎn),∴AE=ED=CF=DF.又∠D=∠D,∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE,∠AFD=∠CED.∴∠AEG=∠CFG.在△AEG和△CFG中,∴△AEG≌△CFG(ASA).∴AG=CG.本題主要考查正方形的性質(zhì)、全等三角形的判定和性質(zhì),關(guān)鍵是要靈活運(yùn)用全等三角形的判定方法.19、(1)見解析;(2)見解析;(3).【解析】

(1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;

(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;

(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設(shè)BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.考查圓的綜合題,考查切線的判定、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.20、(1);(2)或;(3)1.【解析】

(1)直接將已知點(diǎn)代入函數(shù)解析式求出即可;(2)利用函數(shù)圖象結(jié)合交點(diǎn)坐標(biāo)得出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;(3)分別得出EO,AB的長,進(jìn)而得出面積.【詳解】(1)∵二次函數(shù)與軸的交點(diǎn)為和∴設(shè)二次函數(shù)的解析式為:∵在拋物線上,∴3=a(0+3)(0-1),解得a=-1,所以解析式為:;(2)=?x2?2x+3,∴二次函數(shù)的對稱軸為直線;∵點(diǎn)、是二次函數(shù)圖象上的一對對稱點(diǎn);∴;∴使一次函數(shù)大于二次函數(shù)的的取值范圍為或;(3)設(shè)直線BD:y=mx+n,代入B(1,0),D(?2,3)得,解得:,故直線BD的解析式為:y=?x+1,把x=0代入得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=×1×3?×1×1=1.此題主要考查了待定系數(shù)法求一次函數(shù)和二次函數(shù)解析式,利用數(shù)形結(jié)合得出是解題關(guān)鍵.21、(1)144°;(2)補(bǔ)圖見解析;(3)160人;(4)這個說法不正確,理由見解析.【解析】

試題分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案為144°;(2)“經(jīng)常參加”的人數(shù)為:300×40%=120人,喜歡籃球的學(xué)生人數(shù)為:120﹣27﹣33﹣20=120﹣80=40人;補(bǔ)全統(tǒng)計圖如圖所示;(3)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù)約為:1200×=160人;(4)這個說法不正確.理由如下:小明得到的108人是經(jīng)常參加課外體育鍛煉的男生中最喜歡的項(xiàng)目是乒乓球的人數(shù),而全校偶爾參加課外體育鍛煉的男生中也會有最喜歡乒乓球的,因此應(yīng)多于108人.考點(diǎn):①條形統(tǒng)計圖;②扇形統(tǒng)計圖.22、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點(diǎn)E為AC的中點(diǎn),可知BE垂直平分線段AC,從而結(jié)論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設(shè)AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點(diǎn)E為AC的中點(diǎn),∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設(shè)AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點(diǎn)睛:本題考查了圓周角定理的推

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論