考點攻克人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試卷(含答案詳解版)_第1頁
考點攻克人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試卷(含答案詳解版)_第2頁
考點攻克人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試卷(含答案詳解版)_第3頁
考點攻克人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試卷(含答案詳解版)_第4頁
考點攻克人教版9年級數(shù)學上冊【旋轉】章節(jié)練習試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版9年級數(shù)學上冊【旋轉】章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等邊三角形 B.直角三角形 C.正五邊形 D.矩形2、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(

)A. B. C. D.3、小明把一副三角板按如圖所示疊放在一起,固定三角板ABC,將另一塊三角板DEF繞公共頂點B順時針旋轉(旋轉角度不超過180°).若兩塊三角板有一邊平行,則三角板DEF旋轉的度數(shù)可能是(

)A.15°或45° B.15°或45°或90°C.45°或90°或135° D.15°或45°或90°或135°4、如圖,已知正方形的邊長為4,以點C為圓心,2為半徑作圓,P是上的任意一點,將點P繞點D按逆時針方向旋轉,得到點Q,連接,則的最大值是(

)A.6 B. C. D.5、如圖,點O為矩形ABCD的對稱中心,點E從點A出發(fā)沿AB向點B運動,移動到點B停止,延長EO交CD于點F,則四邊形AECF形狀的變化依次為()A.平行四邊形→正方形→平行四邊形→矩形B.平行四邊形→菱形→平行四邊形→矩形C.平行四邊形→正方形→菱形→矩形D.平行四邊形→菱形→正方形→矩形6、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉得到,連接.則在點M運動過程中,線段長度的最小值是(

)A. B.1 C.2 D.7、如圖,在方格紙中,將繞點按順時針方向旋轉90°后得到,則下列四個圖形中正確的是()A. B.C. D.8、如圖,與關于成中心對稱,不一定成立的結論是(

)A. B.C. D.9、2020年7月20日,寧津縣人民政府印發(fā)《津縣城市生活垃圾分類制度實施方案》的通知,全面推行生活垃圾分類.下列垃圾分類標志分別是廚余垃圾、有害垃圾、其他垃圾和可回收物,其中既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.10、如圖,△ABC是等邊三角形,D為BC邊上的點,△ABD經(jīng)旋轉后到達△ACE的位置,那么旋轉角為(

)A.75° B.60° C.45° D.15°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,將正方形網(wǎng)格放置在平面直角坐標系中,其中,每個小正方形的邊長均為1,點A,B,C的坐標分別為,,.是關于軸的對稱圖形,將繞點逆時針旋轉180°,點的對應點為M,則點M的坐標為________.2、如圖,矩形ABCD中,AB=3,BC=4,以點A為中心,將矩形ABCD旋轉得到矩形AB'C'D',使得點B'落在邊AD上,則∠C'AC的度數(shù)為_____°.3、如圖,把△ABC繞點C按順時針方向旋轉35°,得到,交AC于點D,若,則∠A=°4、如圖,把△ABC繞點C順時針旋轉25°,得到△A′B′C,A′B′交AC于點D,若∠A′DC=90°,則∠A度數(shù)為___________.5、如圖,在平面直角坐標系中,等腰直角三角形OAB,∠A=90°,點O為坐標原點,點B在x軸上,點A的坐標是(1,1).若將△OAB繞點O順時針方向依次旋轉45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…則A2021的坐標是______.6、將邊長為的正方形繞點按順時針方向旋轉到的位置(如圖),使得點落在對角線上,與相交于點,則=_________.(結果保留根號)7、如圖,已知點的坐標是,,點的坐標是,,菱形的對角線交于坐標原點,則點的坐標是______.8、如圖,點P是邊長為1的正方形ABCD的對角線AC上的一個動點,點E是BC中點,連接PE,并將PE繞點P逆時針旋轉120°得到PF,連接EF,則EF的最小值是_________.9、一副三角板如圖放置,將三角板ADE繞點A逆時針旋轉,使得三角板ADE的一邊所在的直線與BC垂直,則的度數(shù)為______.10、如圖,在平面直角坐標系中,一次函數(shù)的圖像分別交、軸于點、,將直線繞點按順時針方向旋轉,交軸于點,則直線的函數(shù)表達式是__________.三、解答題(6小題,每小題5分,共計30分)1、圖,在每個小正方形的邊長為1個單位的網(wǎng)格中,的頂點均在格點(網(wǎng)格線的交點)上.(1)將向右平移5個單位得到,畫出;(2)將(1)中的繞點C1逆時針旋轉得到,畫出.2、在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,點A關于直線BC的對稱點為A′,連接A′B,點P為直線BC上的動點(不與點B重合),連接AP,將線段AP繞點P逆時針旋轉60°,得到線段PD,連接A′D,BD.【問題發(fā)現(xiàn)】(1)如圖1,當點D在直線BC上時,線段BP與A′D的數(shù)量關系為,∠DA′B=;【拓展探究】(2)如圖2,當點P在BC的延長線上時,(1)中結論是否成立?若成立,請加以證明;若不成立,請說明理由;【問題解決】(3)當∠BDA′=30°時,求線段AP的長度.3、如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的,連接BE,CF相交于點D,(1)求證:BE=CF;(2)當四邊形ACDE為菱形時,求BD的長.4、如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).(1)畫出△ABC關于點C成中心對稱的△A'B'C(其中A'是點A的對應點,B'是點B的對應點);(2)用無刻度的直尺作出一個格點O,使得OA=OB.5、已知正方形ABCD,將線段BA繞點B旋轉(),得到線段BE,連接EA,EC.(1)如圖1,當點E在正方形ABCD的內(nèi)部時,若BE平分∠ABC,AB=4,則∠AEC=______°,四邊形ABCE的面積為______;(2)當點E在正方形ABCD的外部時,①在圖2中依題意補全圖形,并求∠AEC的度數(shù);②作∠EBC的平分線BF交EC于點G,交EA的延長線于點F,連接CF.用等式表示線段AE,F(xiàn)B,F(xiàn)C之間的數(shù)量關系,并證明.6、如圖,正方形中,M是其內(nèi)一點,,將繞點B順時針旋轉至,連接、、,延長交與點E,交與點G.(1)在圖中找到與相等的線段,并證明.(2)求證:E是線段的中點.-參考答案-一、單選題1、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念逐一判斷可得.【詳解】解:A.等邊三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;B.直角三角形既不是軸對稱圖形,也不是中心對稱圖形,不符合題意;C.正五邊形是軸對稱圖形,不是中心對稱圖形,不符合題意;D.矩形既是軸對稱圖形,又是中心對稱圖形,符合題意;故選:D.【考點】本題主要考查中心對稱圖形和軸對稱圖形,解題的關鍵是掌握把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.2、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:D.【考點】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關鍵.3、D【解析】【分析】分四種情況討論,由平行線的性質(zhì)和旋轉的性質(zhì)可求解.【詳解】解:設旋轉的度數(shù)為α,若DE∥AB,則∠E=∠ABE=90°,∴α=90°-30°-45°=15°,若BE∥AC,則∠ABE=180°-∠A=120°,∴α=120°-30°-45°=45°,若BD∥AC,則∠ACB=∠CBD=90°,∴α=90°,當點C,點B,點E共線時,∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°-45°=135°,綜上三角板DEF旋轉的度數(shù)可能是15°或45°或90°或135°.故選:D【考點】本題考查了旋轉的性質(zhì),平行線的性質(zhì),利用分類討論思想解決問題是本題的關鍵.4、A【解析】【分析】連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.根據(jù)正方形的性質(zhì),旋轉的性質(zhì),角的和差關系,全等三角形的判定定理和性質(zhì)求出AQ的長度,根據(jù)三角形三邊關系確定當點Q與點E重合時,BQ取得最大值,最后根據(jù)線段的和差關系計算即可.【詳解】解:如下圖所示,連接CP,AQ,以A為圓心,以AQ為半徑畫圓,延長BA交于E.∵正方形ABCD的邊長為4,的半徑為2,∴AD=CD=AB=4,∠ADC=90°,CP=2.∵點P繞點D按逆時針方向旋轉90°得到點Q,∴∠QDP=90°,QD=PD.∴∠ADC=∠QDP.∴∠ADC-∠QDC=∠QDP-∠QDC,即∠ADQ=∠CDP.∴.∴AQ=CP=2.∴AE=AQ=2.∵P是上任意一點,∴點Q在上移動.∴.∴當點Q與點E重合時,BQ取得最大值為BE.∴BE=AE+AB=6.故選:A.【考點】本題考查正方形的性質(zhì),旋轉的性質(zhì),角的和差關系,全等三角形的判定定理和性質(zhì),三角形三邊關系,線段的和差關系,綜合應用這些知識點是解題關鍵.5、B【解析】【分析】根據(jù)對稱中心的定義,根據(jù)矩形的性質(zhì),可得四邊形AECF形狀的變化情況.【詳解】解:觀察圖形可知,四邊形AECF形狀的變化依次為平行四邊形→菱形→平行四邊形→矩形.故選:B.【考點】考查了中心對稱,矩形的性質(zhì),平行四邊形的判定與性質(zhì),菱形的性質(zhì),根據(jù)EF與AC的位置關系即可求解.6、A【解析】【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點】本題考查了旋轉的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.7、B【解析】【分析】根據(jù)繞點按順時針方向旋轉90°逐項分析即可.【詳解】A、是由關于過B點與OB垂直的直線對稱得到,故A選項不符合題意;B、是由繞點按順時針方向旋轉90°后得到,故B選項符合題意;C、與對應點發(fā)生了變化,故C選項不符合題意;D、是由繞點按逆時針方向旋轉90°后得到,故D選項不符合題意.故選:B.【考點】本題考查旋轉變換.解題的關鍵是弄清旋轉的方向和旋轉的度數(shù).8、D【解析】【分析】根據(jù)中心對稱的性質(zhì)即可判斷.【詳解】解:對應點的連線被對稱中心平分,A,B正確;成中心對稱圖形的兩個圖形是全等形,那么對應線段相等,C正確;和不是對應角,D錯誤.故選:D.【考點】本題考查成中心對稱兩個圖形的性質(zhì):對應點的連線被對稱中心平分;成中心對稱圖形的兩個圖形是全等形.9、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念去判斷即可.【詳解】A、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;B、是軸對稱圖形也是中心對稱圖形,故滿足題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;D、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形,關鍵是緊扣軸對稱圖形和中心對稱圖形的概念.10、B【解析】【分析】根據(jù)題意可知旋轉角為,根據(jù)等邊三角形的性質(zhì)即可求解.【詳解】解:△ABD經(jīng)旋轉后到達△ACE的位置,△ABC是等邊三角形,旋轉角為,故選B【考點】本題考查了等邊三角形的性質(zhì),找旋轉角,找到旋轉前后對應的線段所產(chǎn)生的夾角即為旋轉是解題的關鍵.二、填空題1、【解析】【分析】根據(jù)題意,畫出旋轉后圖形,即可求解【詳解】解:如圖,將繞點逆時針旋轉180°,所以點的對應點為M的坐標為.故答案為:【考點】本題考查平面直角坐標系內(nèi)圖形的對稱,旋轉,解題關鍵是理解對稱旋轉的含義,并結合網(wǎng)格解題.2、90【解析】【分析】根據(jù)旋轉的性質(zhì)可得,利用全等三角形的性質(zhì)可得,結合圖形及矩形的性質(zhì)可得,即可得出結果.【詳解】解:∵將矩形ABCD旋轉得到矩形,∴,∴,∵,∴,即,故答案為:90.【考點】題目主要考查矩形的基本性質(zhì),旋轉的性質(zhì),全等三角形的性質(zhì)等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.3、55【解析】【分析】根據(jù)旋轉的性質(zhì)可得,,再由直角三角形兩銳角互余,即可求解.【詳解】解:∵把△ABC繞點C按順時針方向旋轉35°,得到∴,,∵,∴∴∠A=55°.故答案為:55【考點】本題主要考查了圖形的旋轉,直角三角形兩銳角的關系,熟練掌握旋轉的性質(zhì),直角三角形兩銳角互余是解題的關鍵.4、65°【解析】【分析】根據(jù)旋轉的性質(zhì),可得知,從而求得的度數(shù),又因為的對應角是,即可求出的度數(shù).【詳解】繞著點時針旋轉,得到,的對應角是故答案為:.【考點】此題考查了旋轉的性質(zhì),解題的關鍵是正確確定對應角.5、【解析】【分析】根據(jù)題意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此發(fā)現(xiàn),旋轉8次一個循環(huán),再由,即可求解.【詳解】解:根據(jù)題意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此發(fā)現(xiàn),旋轉8次一個循環(huán),∵,∴A2021的坐標是.故答案為:【考點】本題主要考查了圖形的旋轉,明確題意,準確得到規(guī)律是解題的關鍵.6、【解析】【分析】先根據(jù)正方形的性質(zhì)得到CD=1,∠CDA=90°,再利用旋轉的性質(zhì)得CF=,根據(jù)正方形的性質(zhì)得∠CFE=45°,則可判斷△DFH為等腰直角三角形,從而計算CF-CD即可.【詳解】∵四邊形ABCD為正方形,∴CD=1,∠CDA=90°,∵邊長為1的正方形ABCD繞點C按順時針方向旋轉到FECG的位置,使得點D落在對角線CF上,∴CF=,∠CFDE=45°,∴△DFH為等腰直角三角形,∴DH=DF=CF-CD=-1.故答案為-1.【考點】本題考查了旋轉的性質(zhì):對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了正方形的性質(zhì).7、【解析】【分析】根據(jù)菱形具有的平行四邊形基本性質(zhì),對角線互相平分,且交點為坐標原點,則,關于原點對稱,因此在直角坐標系中兩點的坐標關于原點對稱,橫坐標與橫坐標互為相反數(shù),縱坐標與縱坐標互為相反數(shù)便可得.【詳解】∵四邊形是菱形,對角線相交于坐標原點∴根據(jù)平行四邊形對角線互相平分的性質(zhì),和;和均關于原點對稱根據(jù)直角坐標系上一點關于原點對稱的點為可得已知點的坐標是,則點的坐標是.故答案為:.【考點】本題旨在考查菱形的基本性質(zhì)及直角坐標系中關于原點對稱點的坐標的知識點,熟練理解掌握該知識點為解題的關鍵.8、##【解析】【分析】當EP⊥AC時,EF有最小值,過點P作PM⊥EF于點M,由直角三角形的性質(zhì)求出PE的長,由旋轉的性質(zhì)得出PE=PF,∠EPF=120°,求出PM的長,則可得出答案.【詳解】解:如圖,當EP⊥AC時,EF有最小值,過點P作PM⊥EF于點M,∵四邊形ABCD是正方形,∴∠ACB=45°,∵E為BC的中點,BC=1,∴CE=,∴PE=CE=,∵將PE繞點P逆時針旋轉120°得到PF,∴PE=PF,∠EPF=120°,∴∠PEF=30°,∴PM=PE=由勾股定理得EM=,∴EF=2EM=,∴EF的最小值是.故答案為:.【考點】本題考查了旋轉的性質(zhì),正方形的性質(zhì),直角三角形的性質(zhì),垂線段的性質(zhì),熟練掌握旋轉的性質(zhì)是解題的關鍵.9、15°或60°.【解析】【分析】分情況討論:①DE⊥BC,②AD⊥BC,然后分別計算的度數(shù)即可解答.【詳解】解:①如下圖,當DE⊥BC時,如下圖,∠CFD=60°,旋轉角為:=∠CAD=60°-45°=15°;(2)當AD⊥BC時,如下圖,旋轉角為:=∠CAD=90°-30°=60°;【考點】本題考查了垂直的定義和旋轉的性質(zhì),熟練掌握并準確分析是解題的關鍵.10、【解析】【分析】先根據(jù)一次函數(shù)求得、坐標,再過作的垂線,構造直角三角形,根據(jù)勾股定理和正余弦公式求得的長度,得到點坐標,從而得到直線的函數(shù)表達式.【詳解】因為一次函數(shù)的圖像分別交、軸于點、,則,,則.過作于點,因為,所以由勾股定理得,設,則,根據(jù)等面積可得:,即,解得.則,即,所以直線的函數(shù)表達式是.【考點】本題綜合考察了一次函數(shù)的求解、勾股定理、正余弦公式,以及根據(jù)一次函數(shù)的解求一次函數(shù)的表達式,要學會通過作輔助線得到特殊三角形,以便求解.三、解答題1、(1)作圖見解析;(2)作圖見解析.【解析】【分析】(1)利用點平移的規(guī)律找出、、,然后描點即可;(2)利用網(wǎng)格特點和旋轉的性質(zhì)畫出點,即可.【詳解】解:(1)如下圖所示,為所求;(2)如下圖所示,為所求;【考點】本題考查了平移作圖和旋轉作圖,熟悉相關性質(zhì)是解題的關鍵.2、(1)相等;90°;(2)成立,證明見解析;(3)線段AP的長度為4或4.【解析】【分析】(1)首先推知AP=PB,PC=AP,根據(jù)全等三角形的性質(zhì)即可得到結論;(2)如圖②,連接AD,根據(jù)等邊三角形的性質(zhì)得到AB=AA′,由旋轉的性質(zhì)得到AP=DP,∠APD=60°,推出△AA′B是等邊三角形,得到PA=PD=AD,根據(jù)全等三角形的性質(zhì)即可得到結論;(3)如圖③,由(2)知,∠BA′D=90°根據(jù)已知條件得到D在BA的延長線上,由旋轉的性質(zhì)得到AP=DP,∠APD=60°,推出△AA′B是等邊三角形,得到PA=PD=AD,于是得到結論;如圖④,由(2)知,∠BA′D=90°,根據(jù)旋轉的性質(zhì)得到AP=DP,∠APD=60°,求得PA=PD=AD,∠PAD=∠BAA′=60°,根據(jù)全等三角形的性質(zhì)得到PB=DA′=4,根據(jù)勾股定理即可得到結論.【詳解】(1)在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,點A關于直線BC的對稱點為A′,則∠ABC=∠A′BC=30°,AB=A′B.∴∠ABA′=60°.∴△ABA′是等邊三角形,∴∠AA′B=60°,∵∠APD=60°,∴∠BAP=∠ABP=∠PAC=30°,∴AP=PB,PCAP,∵AP=PD,∴PCPD,∴PC=CD,∵AC=A′C,∠ACP=∠A′CD,∴△APC≌△A′DC(SAS),∴DA′=AP,∠CA′D=∠PAC=30°,∴PB=DA′,∠BA′D=60°+30°=90°,故答案為:相等;90°;(2)成立,證明如下:如圖②,連接AD,∵△AA′B是等邊三角形,∴AB=AA′,由旋轉的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∴∠BAP=∠BAC+∠CAP,∠A′AD=∠PAD+∠CAP,∠BAC=∠PAD,∴∠BAP=∠A′AD,在△BAP與△A′AD中,∵,∴△BAP≌△A′AD(SAS),

∴BP=A′D,∠AA′D=∠ABC=30°.∵∠BA′A=60°,∴∠DA′B=∠BA′A+∠AA′D=90°;(3)如圖③,當點P在BC的延長線上時,由(2)知,∠BA′D=90°∵∠BDA′=30°,∴∠DBA′=60°,∴D在BA的延長線上,由旋轉的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∵BA′=4,∴BD=8,∴AP=AD=4;如圖④,當點P在CB的延長線上時,由(2)知,∠BA′D=90°,∵∠BDA′=30°,∵BA′=4,∴DA′=4,由旋轉的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∠PAD=∠BAA′=60°,∴∠PAB=∠DAA′,∵AB=AA′,∴△ABP≌△AA′D(SAS),∴PB=DA′=4,∵AC=2,BC=2,∴CP=6,∴AP4.綜上所述,線段AP的長度為4或4.【考點】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì),正確的作出圖形是解題的關鍵.3、(1)證明見解析(2)-1【解析】【分析】(1)先由旋轉的性質(zhì)得AE=AB,AF=AC,∠EAF=∠BAC,則∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,從而得出BE=CF;(2)由菱形的性質(zhì)得到DE=AE=AC=AB=1,AC∥DE,根據(jù)等腰三角形的性質(zhì)得∠AEB=∠ABE,根據(jù)平行線得性質(zhì)得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判斷△ABE為等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【詳解】(1)∵△AEF是由△ABC繞點A按順時針方向旋轉得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,△ACF≌△ABEBE=CF.(2)∵四邊形ACDE為菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE為等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.考點:1.旋轉的性質(zhì);2.勾股定理;3.菱形的性質(zhì).4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論