綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測試試題(含答案解析版)_第1頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測試試題(含答案解析版)_第2頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測試試題(含答案解析版)_第3頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測試試題(含答案解析版)_第4頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測試試題(含答案解析版)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=OC=,則點B的坐標(biāo)為()A.(,1) B.(1,) C.(+1,1) D.(1,+1)2、直角三角形中,兩直角邊長分別是12和5,則斜邊上的中線長是()A.2.5 B.6 C.6.5 D.133、如圖,OA⊥OB,OB=4,P是射線OA上一動點,連接BP,以B為直角頂點向上作等腰直角三角形,在OA上取一點D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運動時,PD的長度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變4、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.5、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:26、如圖,以O(shè)為圓心,長為半徑畫弧別交于A、B兩點,再分別以A、B為圓心,以長為半徑畫弧,兩弧交于點C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形7、順次連接矩形各邊中點得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形8、如圖,在四邊形中,AB∥CD,添加下列一個條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.9、如圖,在中,,,AD平分,E是AD中點,若,則CE的長為()A. B. C. D.10、如圖,在矩形ABCD中,點O為對角線BD的中點,過點O作線段EF交AD于F,交BC于E,OB=EB,點G為BD上一點,滿足EG⊥FG,若∠DBC=30°,則∠OGE的度數(shù)為()A.30° B.36° C.37.5° D.45°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點,將?ABCD沿EH翻折,使得AD的對應(yīng)線段FG經(jīng)過點C,若FG⊥CD,CG=4,則EF的長度為_____.2、如圖,在矩形ABCD中,AD=3AB,點G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時,四邊形BHDG為菱形.3、如圖,為了測量池塘兩岸A,B兩點之間的距離,可在AB外選一點C,連接AC和BC,再分別取AC、BC的中點D,E,連接DE并測量出DE的長,即可確定A、B之間的距離.若量得DE=15m,則A、B之間的距離為__________m4、如圖,矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.5、如圖,在矩形紙片ABCD中,AB=6,BC=4,點E是AD的中點,點F是AB上一動點將AEF沿直線EF折疊,點A落在點A′處在EF上任取一點G,連接GC,,,則的周長的最小值為________.6、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.7、如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.8、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________9、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側(cè)作等腰Rt△ABC,則OC的長為__________________.10、如果一個矩形較短的邊長為5cm,兩條對角線的夾角為60°,則這個矩形的對角線長是_________cm.三、解答題(5小題,每小題6分,共計30分)1、如圖所示,在邊長為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點的一動點,N是CD上一動點,且AM+CN=1.(1)證明:無論M,N怎樣移動,△BMN總是等邊三角形;(2)求△BMN面積的最小值.2、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.3、如圖,已知四邊形ABCD是正方形,點E是AD邊上的一點(不與點A,D重合),連接CE,以CE為一邊作正方形CEFG,使點F,G與點A,B在CE的兩側(cè),連接BE并延長,交GD延長線于點H.(1)如圖1,請判斷線段BE與GD的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,連接BG,若AB=2,CE=,請你直接寫出的值.4、D、分別是不等邊三角形即的邊、的中點.是平面上的一動點,連接、,、分別是、的中點,順次連接點、、、.(1)如圖,當(dāng)點在內(nèi)時,求證:四邊形是平行四邊形;(2)若四邊形是菱形,點所在位置應(yīng)滿足什么條件?(直接寫出答案,不需說明理由.)5、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,D,M關(guān)于直線AF對稱.連結(jié)DM并延長交AE的延長線于N,求證:.-參考答案-一、單選題1、C【解析】【分析】作,求得、的長度,即可求解.【詳解】解:作,如下圖:則在平行四邊形中,,∴∴為等腰直角三角形則,解得∴故選:C【點睛】此題考查了平行四邊形的性質(zhì),等腰直角三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是靈活運用相關(guān)性質(zhì)進(jìn)行求解.2、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).3、D【解析】【分析】過點作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過點作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長度保持不變,故選:D.【點睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點,通過作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.4、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進(jìn)而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當(dāng)時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.5、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時,應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.6、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對角線垂直的平行四邊形是菱形.7、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質(zhì)證明,再證明四邊形是平行四邊形,再證明從而可得結(jié)論.【詳解】解:如圖,矩形中,分別為四邊的中點,,四邊形是平行四邊形,四邊形是菱形.故選C.【點睛】本題考查的是矩形的性質(zhì),菱形的判定,三角形的中位線的性質(zhì),熟練的運用三角形的中位線的性質(zhì)解決中點四邊形問題是解本題的關(guān)鍵.8、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.9、B【解析】【分析】根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)角平分線的定義∠DAB=∠B,求出AD,根據(jù)直角三角形的性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中點,∴CE=AD=,故選:B.【點睛】本題考查的是直角三角形的性質(zhì)、角平分線的定義,掌握直角三角形斜邊上的中線是斜邊的一半是解題的關(guān)鍵.10、C【解析】【分析】根據(jù)矩形和平行線的性質(zhì),得;根據(jù)等腰三角形和三角形內(nèi)角和性質(zhì),得;根據(jù)全等三角形性質(zhì),通過證明,得;根據(jù)直角三角形斜邊中線、等腰三角形、三角形內(nèi)角和性質(zhì),推導(dǎo)得,再根據(jù)余角的性質(zhì)計算,即可得到答案.【詳解】∵矩形ABCD∴∴∵OB=EB,∴∴∵點O為對角線BD的中點,∴和中∴∴∵EG⊥FG,即∴∴∴故選:C.【點睛】本題考查了矩形、平行線、全等三角形、等腰三角形、三角形內(nèi)角和、直角三角形的知識;解題的關(guān)鍵是熟練掌握矩形、全等三角形、等腰三角形、直角三角形斜邊中線的性質(zhì),從而完成求解.二、填空題1、【解析】【分析】延長CF與AB交于點M,由平行四邊形的性質(zhì)得BC長度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進(jìn)而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長CF與AB交于點M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應(yīng)用,關(guān)鍵是作輔助線構(gòu)造直角三角形.2、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.3、30【解析】【分析】根據(jù)三角形中位線的性質(zhì)解答即可.【詳解】解:∵點D,E分別是AC,BC的中點,∴DE是△ABC的中位線,∴AB=2DE=30m.故填30.【點睛】本題主要考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊且等于第三邊的一半是解答本題的關(guān)鍵.4、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點E為BC的中點,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.5、【解析】【分析】連接AC交EF于G,連接A′G,此時△CGA′的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時,△CGA′的周長最小,求出CA′的最小值即可解決問題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時△A′GC的周長最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長的最小值+CA′,當(dāng)CA′最小時,△CGA′的周長最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長的最小值為2-2,故答案為:.【點睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問題等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考填空題中的壓軸題.6、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.7、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.5cm,故答案為:2.5.【點睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長及證明EF=OD.8、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進(jìn)行求解.9、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結(jié)論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當(dāng)以AB、BC為直角邊作等腰直角三角形時,與圖2的解法相同;綜上所述,OC的長為2或2,故答案為:2或2.【點睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進(jìn)行分類討論是解題的關(guān)鍵.10、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結(jié)合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對角線相等且互相平分”是解本題的關(guān)鍵.三、解答題1、(1)見解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過點B作BE⊥MN于點E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過點B作BE⊥MN于點E.設(shè)BM=BN=MN=x,則,故,∴當(dāng)BM⊥AD時,x最小,此時,,.∴△BMN面積的最小值為.【點睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線段最短,全等三角形的判定與性質(zhì)等知識,關(guān)鍵是作輔助線證三角形全等.2、【分析】根據(jù)平行四邊形的性質(zhì)可得,,勾股定理求得,,進(jìn)而求得【詳解】解:四邊形是平行四邊形AB⊥AC,在中,在中,【點睛】本題考查了平行四邊形的性質(zhì),勾股定理,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.3、(1)BE=DG,BE⊥DG,理由見解析;(2).【分析】(1)由“SAS”證得△GCD≌△ECB;再由全等三角形的性質(zhì)和平行線的性質(zhì)可得∠EBC=∠HED=∠GDC,由余角的性質(zhì)可得答案;(2)連接BD,EG,由①知∠BHD=∠EHG=90°,根據(jù)勾股定理可得出答案.【詳解】證明:(1)BE=DG,BE⊥DG,理由如下:∵四邊形ABCD是正方形,四邊形FGCE是正方形,∴CD=CB,CG=CE,∠GCE=∠DCB=90°,∴∠GCD=∠ECB,且CD=CB,CG=CE,∴△GCD≌△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論