版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》過關(guān)檢測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在?ABCD中,為的直徑,⊙O和相切于點(diǎn)E,和相交于點(diǎn)F,已知,,則的長為(
)A. B. C. D.22、一個(gè)商標(biāo)圖案如圖中陰影部分,在長方形中,,,以點(diǎn)為圓心,為半徑作圓與的延長線相交于點(diǎn),則商標(biāo)圖案的面積是(
)A. B.C. D.3、若某圓錐的側(cè)面展開圖是一個(gè)半圓,已知圓錐的底面半徑為r,那么圓錐的高為(
)A. B. C. D.4、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.05、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點(diǎn)C作⊙O的切線,交AB的延長線于點(diǎn)D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,分別以等邊三角形的每個(gè)頂點(diǎn)為圓心、以邊長為半徑,在另兩個(gè)頂點(diǎn)間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為,則勒洛三角形的周長為_____.2、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長是_____.3、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是AB的中點(diǎn),以CD為直徑作⊙O,⊙O分別與AC,BC交于點(diǎn)E,F(xiàn),過點(diǎn)F作⊙O的切線FG,交AB于點(diǎn)G,則FG的長為_____.4、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.5、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在平面直角坐標(biāo)系中,拋物線過點(diǎn),,與y軸交于點(diǎn)C,連接BC,點(diǎn)N是第一象限拋物線上一點(diǎn),連接NA,交y軸于點(diǎn)E,.(1)求拋物線的解析式;(2)求線段AN的長;(3)若點(diǎn)M在第三象限拋物線上,連接MN,,則這時(shí)點(diǎn)M的坐標(biāo)為______(直接寫出結(jié)果).2、如下圖是一個(gè)隧道的橫截面,它的形狀是以點(diǎn)O為圓心的圓的一部分.如果M是中弦的中點(diǎn),經(jīng)過圓心O交圓O于點(diǎn)E,并且.求的半徑.3、如圖,在四邊形中,,.是四邊形內(nèi)一點(diǎn),且.求證:(1);(2)四邊形是菱形.4、如圖,⊙O的半徑弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.5、如圖所示,四邊形ABCD的頂點(diǎn)在同一個(gè)圓上,另一個(gè)圓的圓心在AB邊上,且該圓與四邊形ABCD的其余三條邊相切.求證:.-參考答案-一、單選題1、C【解析】【分析】首先求出圓心角∠EOF的度數(shù),再根據(jù)弧長公式,即可解決問題.【詳解】解:如圖連接OE、OF,∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的長.故選:C.【考點(diǎn)】本題考查切線的性質(zhì)、平行四邊形的性質(zhì)、弧長公式等知識(shí),解題的關(guān)鍵是求出圓心角的度數(shù),記住弧長公式.2、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點(diǎn)】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.3、C【解析】【分析】設(shè)圓錐母線長為R,由題意易得圓錐的母線長為,然后根據(jù)勾股定理可求解.【詳解】解:設(shè)圓錐母線長為R,由題意得:∵圓錐的側(cè)面展開圖是一個(gè)半圓,已知圓錐的底面半徑為r,∴根據(jù)圓錐側(cè)面展開圖的弧長和圓錐底面圓的周長相等可得:,∴,∴圓錐的高為;故選C.【考點(diǎn)】本題主要考查圓錐側(cè)面展開圖及弧長計(jì)算公式,熟練掌握?qǐng)A錐的特征及弧長計(jì)算公式是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.5、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點(diǎn)】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握?qǐng)A的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).二、填空題1、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為:πa.【考點(diǎn)】本題考查了弧長公式,解題的關(guān)鍵是掌握(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).2、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.3、.【解析】【分析】先利用勾股定理求出AB=10,進(jìn)而求出CD=BD=5,再求出CF=4,進(jìn)而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結(jié)論.【詳解】如圖,在Rt△ABC中,根據(jù)勾股定理得,AB=10,∴點(diǎn)D是AB中點(diǎn),∴CD=BD=AB=5,連接DF,∵CD是⊙O的直徑,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,連接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切線,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案為.【考點(diǎn)】此題主要考查了直角三角形的性質(zhì),勾股定理,切線的性質(zhì),三角形的中位線定理,三角形的面積公式,判斷出FG⊥AB是解本題的關(guān)鍵.4、40【解析】【分析】若要利用∠BAD的度數(shù),需構(gòu)建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點(diǎn)】本題考查了圓周角定理及其推論:同弧所對(duì)的圓周角相等;半圓(弧)和直徑所對(duì)的圓周角是直角,正確添加輔助線是解題的關(guān)鍵.5、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點(diǎn)進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設(shè)這兩條直線不平行,則兩條直線有交點(diǎn),因?yàn)檫^直線外一點(diǎn)有且只有一條直線與已知直線平行因此,兩條直線有交點(diǎn)時(shí),它們不可能同時(shí)與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點(diǎn)】本題主要考查了反證法,在解題時(shí)要根據(jù)反證法的特點(diǎn)進(jìn)行證明是本題的關(guān)鍵.三、解答題1、(1)(2)(3)【解析】【分析】(1)把,代入,待定系數(shù)法求解析式即可;(2)根據(jù)解析式求得,證明≌可得,進(jìn)而可得,求得直線AN的解析式為,聯(lián)立拋物線解析式即可求得點(diǎn)的坐標(biāo),過點(diǎn)N作軸于點(diǎn)D,勾股定理即可求得線段AN的長;(3)設(shè)的外接圓為圓R,圓心R的坐標(biāo)為,過點(diǎn)R作軸于點(diǎn)G,過點(diǎn)M作的延長線于點(diǎn)H,連接AR,MR,NR.證明≌可得,,,進(jìn)而表示出點(diǎn),將點(diǎn)M的坐標(biāo)代入拋物線表達(dá)式得出④式,根據(jù)得出⑤式,聯(lián)立求解即可求得點(diǎn)的坐標(biāo)(1)把,代入得:,解得,故拋物線的表達(dá)式為.(2)令,得,∴,.∵,∴.∵,,∴≌.∴,∴.設(shè)直線AN的解析式為,把,代入得:,解得,故直線AN的解析式為.由,解得,.故點(diǎn).過點(diǎn)N作軸于點(diǎn)D,則,,根據(jù)勾股定理得:.(3).設(shè)的外接圓為圓R,過點(diǎn)R作軸于點(diǎn)G,過點(diǎn)M作的延長線于點(diǎn)H,連接AR,MR,NR.當(dāng)時(shí),則,設(shè)圓心R的坐標(biāo)為,∵,,∴,∵,,∴≌(AAS),∴,,∴點(diǎn),將點(diǎn)M的坐標(biāo)代入拋物線表達(dá)式得:④,由題意得:,即⑤,聯(lián)立④⑤并解得:,故點(diǎn).【考點(diǎn)】本題考查了二次函數(shù)的綜合題,待定系數(shù)法求解析式,勾股定理,圓周角定理,等腰三角形的性質(zhì),全等三角形的性質(zhì)與判定,第三問中正確的添加輔助線是解題的關(guān)鍵.2、【解析】【分析】連接CO,利用垂徑定理求解再令⊙O的半徑為rm,利用勾股定理建立方程求解半徑即可得到答案.【詳解】解:連接CO.∵M(jìn)是弦CD的中點(diǎn),且EM經(jīng)過圓心O,∴EM⊥CD,且CM=CD=×4=2.在Rt△OCM中,令⊙O的半徑為rm,∵OC2=OM2+CM2,∴,解得:r=.【考點(diǎn)】本題考查的是垂徑定理的應(yīng)用,勾股定理的應(yīng)用,掌握利用垂徑定理構(gòu)建直角三角形是解題的關(guān)鍵.3、(1)證明見解析;(2)證明見解析.【解析】【詳解】分析:(1)先證點(diǎn)、、共圓,從而得到,又,即可得出結(jié)論;(2)連接,證得到又由于,,結(jié)合可得BO=BC,從而四邊形是菱形.詳解:(1)∵.∴點(diǎn)、、在以點(diǎn)為圓心,為半徑的圓上.∴.又,∴.(2)證明:如圖②,連接.∵,,,∴.∴,.∵,,∴,.又.∴,∴.又,,∴,∴四邊形是菱形.點(diǎn)睛:本題考查圓周角定理、全等三角形的判定和性質(zhì)、菱形的判定等知識(shí),解題的關(guān)鍵是靈活應(yīng)用圓周角定理,學(xué)會(huì)添加常用輔助線,屬于中考??碱}型4、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構(gòu)造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設(shè)的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點(diǎn)】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關(guān)鍵.5、見解析【解析】【分析】證法一,在射線EA上截取,連接OD,OE,OF,OG,因?yàn)?,所以,所以,,由圓的內(nèi)接四邊形性質(zhì)得,由AD,DC是半圓O的切線得,,,即,所以,同理,即可得出結(jié)論.證法二,在BO上截取,連接FM,OF.過點(diǎn)O作,交FM的延長線于點(diǎn)N,連接OE,OD,易證,,,所以.由圓的內(nèi)接四邊形性質(zhì)得,,所以.因?yàn)?,所以,得,,所以,?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年南昌大學(xué)共青學(xué)院單招綜合素質(zhì)筆試模擬試題含詳細(xì)答案解析
- 2026年內(nèi)蒙古體育職業(yè)學(xué)院單招綜合素質(zhì)考試備考題庫含詳細(xì)答案解析
- 2026年內(nèi)蒙古化工職業(yè)學(xué)院單招綜合素質(zhì)筆試模擬試題含詳細(xì)答案解析
- 2026年廣西城市職業(yè)大學(xué)單招綜合素質(zhì)筆試備考試題含詳細(xì)答案解析
- 2026年酒泉職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試備考試題含詳細(xì)答案解析
- 2026年山東外事職業(yè)大學(xué)單招職業(yè)技能考試備考題庫含詳細(xì)答案解析
- 2026年廣東機(jī)電職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 2026年安徽汽車職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試備考試題含詳細(xì)答案解析
- 2026年揭陽職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試備考試題含詳細(xì)答案解析
- 2026年綿陽職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試備考題庫含詳細(xì)答案解析
- 衛(wèi)星傳輸專業(yè)試題題庫及答案
- 細(xì)胞治療GMP生產(chǎn)中的工藝控制
- 氣體滅火拆除施工方案及流程
- DL-T+5220-2021-10kV及以下架空配電線路設(shè)計(jì)規(guī)范
- 視覺傳播概論(第2版)課件全套 任悅 第1-12章 視覺傳播概述- 視覺傳播中的倫理道德與法規(guī)
- 進(jìn)社區(qū)宣講民法典
- 《被壓扁的沙子》優(yōu)質(zhì)教案與反思
- GB/T 27866-2023鋼制管道和設(shè)備防止焊縫硫化物應(yīng)力開裂的硬度控制技術(shù)規(guī)范
- 部編版小學(xué)語文四年級(jí)下冊(cè)第一單元教材解讀課件
- IVMS-5000視頻管理平臺(tái)軟件軟件功能介紹
- 保單整理分享課件
評(píng)論
0/150
提交評(píng)論