中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試黑鉆押題附參考答案詳解(預(yù)熱題)_第1頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試黑鉆押題附參考答案詳解(預(yù)熱題)_第2頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試黑鉆押題附參考答案詳解(預(yù)熱題)_第3頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試黑鉆押題附參考答案詳解(預(yù)熱題)_第4頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試黑鉆押題附參考答案詳解(預(yù)熱題)_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)總復(fù)習(xí)《圓》考試黑鉆押題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列語(yǔ)句,錯(cuò)誤的是()A.直徑是弦 B.相等的圓心角所對(duì)的弧相等C.弦的垂直平分線一定經(jīng)過(guò)圓心 D.平分弧的半徑垂直于弧所對(duì)的弦2、如圖,是的直徑,弦于點(diǎn),,,則的長(zhǎng)為(

)A.4 B.5 C.8 D.163、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的側(cè)面和底面,則的長(zhǎng)為(

)A. B. C. D.4、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o5、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個(gè)輪子的半徑長(zhǎng)為()A.m B.m C.5m D.m第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、若⊙O的半徑為6cm,則⊙O中最長(zhǎng)的弦為_(kāi)_______厘米.2、如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_(kāi)____.3、如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)25°得到,EF交BC于點(diǎn)N,連接AN,若,則__________.4、一個(gè)圓錐的底面半徑r=6,高h(yuǎn)=8,則這個(gè)圓錐的側(cè)面積是_____.5、如圖,在四邊形中,.若,則的內(nèi)切圓面積________(結(jié)果保留).三、解答題(5小題,每小題10分,共計(jì)50分)1、已知:..求作:,使它經(jīng)過(guò)點(diǎn)和點(diǎn),并且圓心在的平分線上,2、如圖1,正五邊形內(nèi)接于⊙,閱讀以下作圖過(guò)程,并回答下列問(wèn)題,作法:如圖2,①作直徑;②以F為圓心,為半徑作圓弧,與⊙交于點(diǎn)M,N;③連接.(1)求的度數(shù).(2)是正三角形嗎?請(qǐng)說(shuō)明理由.(3)從點(diǎn)A開(kāi)始,以長(zhǎng)為半徑,在⊙上依次截取點(diǎn),再依次連接這些分點(diǎn),得到正n邊形,求n的值.3、如圖,△ABC內(nèi)接于⊙O,∠A=30°,過(guò)圓心O作OD⊥BC,垂足為D.若⊙O的半徑為6,求OD的長(zhǎng).4、如圖,,分別切、于點(diǎn)、.切于點(diǎn),交于點(diǎn)與不重合).(1)用直尺和圓規(guī)作出;(保留作圖痕跡,不寫作法)(2)若半徑為1,,求的長(zhǎng).5、已知,正方形ABCD中,M、N分別為AD邊上的兩點(diǎn),連接BM、CN并延長(zhǎng)交于一點(diǎn)H,連接AH,E為BM上一點(diǎn),連接AE、CE,∠ECH+∠MNH=90°.(1)如圖1,若E為BM的中點(diǎn),且DM=3AM,,求線段AB的長(zhǎng).(2)如圖2,若點(diǎn)F為BE中點(diǎn),點(diǎn)G為CF延長(zhǎng)線上一點(diǎn),且EG//BC,CE=GE,求證:.(3)如圖3,在(1)的條件下,點(diǎn)P為線段AD上一動(dòng)點(diǎn),連接BP,作CQ⊥BP于Q,將△BCQ沿BC翻折得到△BCl,點(diǎn)K、R分別為線段BC、Bl上兩點(diǎn),且BI=3RI,BC=4BK,連接CR、IK交于點(diǎn)T,連接BT,直接寫出△BCT面積的最大值.-參考答案-一、單選題1、B【解析】【分析】將每一句話進(jìn)行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對(duì)的弧相等,∴相等的圓心角所對(duì)的弧相等,錯(cuò)誤.C.弦的垂直平分線一定經(jīng)過(guò)圓心,正確.D.平分弧的半徑垂直于弧所對(duì)的弦,正確.故答案選:B.【考點(diǎn)】本題考查了圓中弦、圓心角、弧度之間的關(guān)系,熟練掌握該知識(shí)點(diǎn)是本題解題的關(guān)鍵.2、C【解析】【分析】根據(jù)垂徑定理得出CM=DM,再由已知條件得出圓的半徑為5,在Rt△OCM中,由勾股定理得出CM即可,從而得出CD.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故選:C.【考點(diǎn)】本題考查了垂徑定理,圓周角定理以及勾股定理,掌握定理的內(nèi)容并熟練地運(yùn)用是解題的關(guān)鍵.3、B【解析】【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長(zhǎng)等于圓錐底面圓的周長(zhǎng)列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【考點(diǎn)】本題考查了圓錐的計(jì)算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開(kāi)圖與原來(lái)的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長(zhǎng)是扇形的半徑,圓錐的底面圓周長(zhǎng)是扇形的弧長(zhǎng).4、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.5、D【解析】【分析】連接OB,由垂徑定理得出BD的長(zhǎng);連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個(gè)輪子的半徑長(zhǎng)為m,故選:D.【考點(diǎn)】本題主要考查垂徑定理的應(yīng)用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.二、填空題1、12【解析】【詳解】解:∵⊙O的半徑為6cm,∴⊙O的直徑為12cm,即圓中最長(zhǎng)的弦長(zhǎng)為12cm.故答案為12.2、72°【解析】【分析】首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【考點(diǎn)】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.3、102.5°【解析】【分析】先根據(jù)旋轉(zhuǎn)的性質(zhì)得到,,得到點(diǎn)A、N、F、C共圓,再利用,根據(jù)平角的性質(zhì)即可得到答案;【詳解】解:如圖,AF與CB相交于點(diǎn)O,連接CF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到:AC=AF,,,,∴點(diǎn)A、N、F、C共圓,∴,又∵點(diǎn)A、N、F、C共圓,∴,∴(平角的性質(zhì)),故答案為:102.5°【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì)、平角的性質(zhì)、點(diǎn)共圓的判定,掌握平移的性質(zhì)是解題的關(guān)鍵;4、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問(wèn)題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點(diǎn)】本題考查了圓錐的側(cè)面積,勾股定理等知識(shí),解題的關(guān)鍵是記住圓錐的側(cè)面積公式.5、【解析】【分析】根據(jù),得出為的垂直平分線;利用等腰三角形的三線合一可得,進(jìn)而得出為等邊三角形;利用,得出為直角三角形,解直角三角形,求得等邊三角形的邊長(zhǎng),再利用內(nèi)心的性質(zhì)求出圓的半徑,圓的面積可求.【詳解】解:如圖,設(shè)與交于點(diǎn)F,的內(nèi)心為O,連接.∵,∴是線段的垂直平分線.∴.∵,∴.∴.∴為等邊三角形.∴.∵,∴.∵,∴∴.∴.∵,∴.∵O為的內(nèi)心,∴.∴.∴的內(nèi)切圓面積為.故答案為.【考點(diǎn)】本題考查了垂直平分線的判定、三角形內(nèi)切圓、等邊三角形判定與性質(zhì)、解直角三角形,解題關(guān)鍵是根據(jù)垂直平分線的判定確定為等邊三角形,根據(jù)解直角三角形求出內(nèi)切圓半徑.三、解答題1、見(jiàn)詳解.【解析】【分析】要作圓,即需要先確定其圓心,先作∠A的角平分線,再作線段BC的垂直平分線相交于點(diǎn)O,即O點(diǎn)為圓心.【詳解】解:根據(jù)題意可知,先作∠A的角平分線,再作線段BC的垂直平分線相交于O,即以O(shè)點(diǎn)為圓心,OB為半徑,作圓O,如下圖所示:【考點(diǎn)】此題主要考查了學(xué)生對(duì)確定圓心的作法,要求學(xué)生熟練掌握應(yīng)用.2、(1)(2)是正三角形,理由見(jiàn)解析(3)【解析】【分析】(1)根據(jù)正五邊形的性質(zhì)以及圓的性質(zhì)可得,則(優(yōu)弧所對(duì)圓心角),然后根據(jù)圓周角定理即可得出結(jié)論;(2)根據(jù)所作圖形以及圓周角定理即可得出結(jié)論;(3)運(yùn)用圓周角定理并結(jié)合(1)(2)中結(jié)論得出,即可得出結(jié)論.(1)解:∵正五邊形.∴,∴,∵,∴(優(yōu)弧所對(duì)圓心角),∴;(2)解:是正三角形,理由如下:連接,由作圖知:,∵,∴,∴是正三角形,∴,∴,同理,∴,即,∴是正三角形;(3)∵是正三角形,∴.∵,∴,∵,∴,∴.【考點(diǎn)】本題考查了圓周角定理,正多邊形的性質(zhì),讀懂題意,明確題目中的作圖方式,熟練運(yùn)用圓周角定理是解本題的關(guān)鍵.3、【解析】【分析】連接OB、OC,由圓周角定理及圓的性質(zhì)得△OBC是等邊三角形,由OD⊥BC可得CD=BD,由勾股定理可求得OD的長(zhǎng).【詳解】連接OB、OC,如圖則OB=OC=6∵圓周角∠A與圓心角∠BOC對(duì)著同一段弧∴∠BOC=2∠A=60゜∴△OBC是等邊三角形∴BC=OB=6∵OD⊥BC∴在Rt△ODC中,由勾股定理得:【考點(diǎn)】本題考查了圓周角定理、等邊三角形的判定與性質(zhì)、勾股定理等知識(shí),連接兩個(gè)半徑運(yùn)用圓周角定理是本題的關(guān)鍵.4、(1)見(jiàn)解析;(2)【解析】【分析】(1)以A為圓心,為半徑畫弧交于,作直線交于點(diǎn),直線即為所求.(2)設(shè),利用勾股定理構(gòu)建方程即可解決問(wèn)題.【詳解】解:(1)如圖,直線即為所求.(2)連接,.是的內(nèi)切圓,,,是切點(diǎn),,四邊形是矩形,,四邊形是正方形,,,設(shè),在中,,,,.【考點(diǎn)】本題考查作圖復(fù)雜作圖,切線的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考常考題型.5、(1)4(2)證明見(jiàn)解析(3)【解析】【分析】(1)由正方形ABCD的性質(zhì),可得到△ABM為直角三角形,再由E為BM中點(diǎn),得到BM=2AE,最后由勾股定理求得AB的長(zhǎng)度;(2)過(guò)點(diǎn)A作AY⊥BH于點(diǎn)Y,由EG∥BC,CE=GE,F(xiàn)為BE中點(diǎn),可得△GEF≌△CBF,從而得到△BCE為等腰三角形,再根據(jù)角的關(guān)系,易得∠ECG+∠ECH=∠BCD=45°,得到△HFC為等腰直角三角形,再根據(jù)△ABY≌△BCF,得到BM=CF,AY=BF,從而轉(zhuǎn)化得到結(jié)論;(3)當(dāng)P、D重合時(shí)得到最大面積,以B為原點(diǎn)建立直角坐標(biāo)系,求出坐標(biāo)和表達(dá)式,聯(lián)立方程組求解,即可得出答案.(1)解:∵四邊形ABCD為正方形,且DM=3AM,∴∠BAM=90°,AD=AB=4AM,∴△ABM為直角三角形,∵E為BM的中點(diǎn),,∴BM=2AE=,在Rt△ABM中,設(shè)AM=x,則AB=4x,∴,解得,∴AB=4;(2)過(guò)點(diǎn)A作AY⊥BH于點(diǎn)Y,∵EG//BC,CE=GE,∴∠G=∠BCG=∠ECG,∵F為BE的中點(diǎn),∴△GEF≌△CBF(AAS),∴GE=BC,△BCE為等腰三角形,∴CF⊥BE,∠CFE=90°;∵∠ECH+∠MNH=90°,∠MNH=∠CND,∠CND+∠NCD=90°,∴∠ECH=∠NCD,∴∠ECG+∠ECH=∠BCD=45°,∴△HFC為等腰直角三角形,∴CF=HF;∵∠ABE+∠CBE=90°,∠CBE+∠BCF=90°,∴∠ABE=∠BCF,∵AB=BC,∠AYB=∠BFC=90°,∴△ABY≌△BCF(AAS),∴BY=CF,AY=BF,∴BY=HF∴BY-FY=HF-FY∴BF=HY=AY,∴△AHY是等腰直角三角形,∴,∴,∴;(3)∵∠BQC=90°,∴點(diǎn)Q在以BC為直徑的半圓弧上運(yùn)動(dòng),當(dāng)P點(diǎn)與D點(diǎn)重合時(shí),此時(shí)Q點(diǎn)離BC最遠(yuǎn),∴△Q

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論