2025年江西省樂平市中考數(shù)學試題【真題匯編】附答案詳解_第1頁
2025年江西省樂平市中考數(shù)學試題【真題匯編】附答案詳解_第2頁
2025年江西省樂平市中考數(shù)學試題【真題匯編】附答案詳解_第3頁
2025年江西省樂平市中考數(shù)學試題【真題匯編】附答案詳解_第4頁
2025年江西省樂平市中考數(shù)學試題【真題匯編】附答案詳解_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省樂平市中考數(shù)學試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,正方形邊長為4,、、、分別是、、、上的點,且.設(shè)、兩點間的距離為,四邊形的面積為,則與的函數(shù)圖象可能是(

)A. B. C. D.2、直線不經(jīng)過第二象限,則關(guān)于的方程實數(shù)解的個數(shù)是(

).A.0個 B.1個 C.2個 D.1個或2個3、如圖是下列哪個立體圖形的主視圖()A. B.C. D.4、如圖1,矩形中,點為的中點,點沿從點運動到點,設(shè),兩點間的距離為,,圖2是點運動時隨變化的關(guān)系圖象,則的長為(

)A. B. C. D.5、已知學校航模組設(shè)計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(

)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m二、多選題(5小題,每小題3分,共計15分)1、等腰三角形三邊長分別為a,b,3,且a,b是關(guān)于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.182、如圖,在的網(wǎng)格中,點,,,,均在網(wǎng)格的格點上,下面結(jié)論正確的有(

)A.點是的外心 B.點是的外心C.點是的外心 D.點是的外心3、如圖,二次函敗y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結(jié)論中正確的有()A.a(chǎn)bc<0 B.2a+b=0 C.3a+2c>0 D.對于任意x均有ax2﹣a+bx﹣b≥04、關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當c=0時,函數(shù)的圖象經(jīng)過原點;B.當c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標是;D.當b=0時,函數(shù)的圖象關(guān)于y軸對稱.5、(多選)若數(shù)使關(guān)于的一元二次方程有兩個不相等的實數(shù)解,且使關(guān)于的分式方程的解為非負整數(shù),則滿足條件的的值為(

)A.1 B.3 C.5 D.7第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、拋物線是二次函數(shù),則m=___.2、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.3、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.4、如果點與點B關(guān)于原點對稱,那么點B的坐標是______.5、不透明袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黃球的概率是_______.四、簡答題(2小題,每小題10分,共計20分)1、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.2、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、在平面直角坐標系中,拋物線的對稱軸為.求的值及拋物線與軸的交點坐標;若拋物線與軸有交點,且交點都在點,之間,求的取值范圍.2、下面是“過圓外一點作圓的切線”的尺規(guī)作圖過程.已知:⊙O和⊙O外一點P.求作:過點P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點O和點P為圓心,大于的長半徑作弧,兩弧相交于M,N兩點;(3)作直線MN,交OP于點C;(4)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點A在⊙C上∴∠OAP=90°(___________)(填推理的依據(jù)).∴OA⊥AP.又∵點A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據(jù)).同理可證直線PB是⊙O的切線.3、如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求S△ABC;4、如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).-參考答案-一、單選題1、A【解析】【分析】本題考查了動點的函數(shù)圖象,先判定圖中的四個小直角三角形全等,再用大正方形的面積減去四個直角三角形的面積,得函數(shù)y的表達式,結(jié)合選項的圖象可得答案.【詳解】解:∵正方形ABCD邊長為4,AE=BF=CG=DH∴AH=BE=CF=DG,∠A=∠B=∠C=∠D∴△AEH≌△BFE≌△CGF≌△DHG∴y=4×4-x(4-x)×4=16-8x+2x2=2(x-2)2+8∴y是x的二次函數(shù),函數(shù)的頂點坐標為(2,8),開口向上,從4個選項來看,開口向上的只有A和B,C和D圖象開口向下,不符合題意;但是B的頂點在x軸上,故B不符合題意,只有A符合題意.故選:A.【考點】本題考查了動點問題的函數(shù)圖象,正確地寫出函數(shù)解析式并數(shù)形結(jié)合分析是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)直線不經(jīng)過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經(jīng)過第二象限,∴,∵方程,當a=0時,方程為一元一次方程,故有一個解,當a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數(shù)根,故選:D.【考點】此題考查一次函數(shù)的性質(zhì):利用函數(shù)圖象經(jīng)過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.3、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.4、C【解析】【分析】先利用圖2得出當P點位于B點時和當P點位于E點時的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當P點位于B點時,,即,當P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學生對函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊含了數(shù)形結(jié)合的思想方法.5、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當t=1時,h=24;當t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).二、多選題1、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關(guān)系確定此種情況存在,再利用根與系數(shù)的關(guān)系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數(shù)的關(guān)系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數(shù)的關(guān)系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關(guān)鍵.2、ABCD【解析】【分析】連接HB、HD,利用勾股定理可得,則根據(jù)三角形外心的定義可對四個選項進行判斷.【詳解】解:如圖,連接HB、HD,根據(jù)勾股定理可得:,點是的外心,點是的外心,點是的外心,點是的外心,∴ABCD都是正確的.故選:ABCD.【考點】本題考查了三角形的外心和勾股定理的應(yīng)用,熟練掌握三角形的外心到三角形的三個頂點的距離相等是解決本題的關(guān)鍵.3、BD【解析】【分析】由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即-=1,所以b=-2a<0,利用拋物線與y軸的交點位置得到c<0,則可對A進行判斷;利用b=-2a可對B進行判斷;由于x=-1時,y=0,所以a-b+c=0,則c=-3a,3a+2c=-3a<0,于是可對C進行判斷;根據(jù)二次函數(shù)性質(zhì),x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對D進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線與x軸的交點的坐標分別為(-1,0),(3,0),∴拋物線的對稱軸為直線x=1,即-=1,∴b=-2a<0,∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以A錯誤;∵b=-2a,∴2a+b=0,所以B正確;∵x=-1時,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C錯誤;∵x=1時,y的值最小,∴對于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正確.故選:BD.【考點】本題考查了二次函數(shù)與不等式(組):函數(shù)值y與某個數(shù)值m之間的不等關(guān)系,一般要轉(zhuǎn)化成關(guān)于x的不等式,解不等式求得自變量x的取值范圍;利用兩個函數(shù)圖象在直角坐標系中的上下位置關(guān)系求自變量的取值范圍,可作圖利用交點直觀求解,也可把兩個函數(shù)解析式列成不等式求解.4、ABD【解析】【分析】根據(jù)c與0的關(guān)系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當c=0時,函數(shù)的圖象經(jīng)過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當a<0時,函數(shù)圖象最高點的縱坐標是;當a>0時,函數(shù)圖象最低點的縱坐標是;由于a值不定,故無法判斷最高點或最低點;D.當b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當b=0時,函數(shù)的圖象關(guān)于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當a<0時,函數(shù)的最大值是;當a>0時,函數(shù)的最小值是是解題關(guān)鍵.5、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關(guān)于的一元二次方程有兩個不相等的實數(shù)解,∴,解得:,∵,∴,解得:,∵關(guān)于的分式方程的解為非負整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關(guān)鍵,注意分式的分母不為0的隱含條件,避免漏解.三、填空題1、3【解析】【分析】根據(jù)二次函數(shù)的定義:一般地,形如(a、b、c是常數(shù)且a≠0)的函數(shù)叫做二次函數(shù),進行求解即可.【詳解】解:∵拋物線是二次函數(shù),∴,∴,故答案為:3.【考點】本題主要考查了二次函數(shù)的定義,解題的關(guān)鍵在于能夠熟知二次函數(shù)的定義.2、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.3、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.4、【分析】關(guān)于原點對稱的點坐標特征為:橫坐標、縱坐標都互為相反數(shù);進而求出點B坐標.【詳解】解:由題意知點B橫坐標為;縱坐標為;故答案為:.【點睛】本題考查了關(guān)于原點對稱的點的坐標知識.解題的關(guān)鍵在于熟練記憶關(guān)于原點對稱的點坐標中相對應(yīng)的坐標互為相反數(shù).5、【解析】【分析】用黃球的個數(shù)除以總球的個數(shù)即可得出取出黃球的概率.【詳解】解:∵不透明的袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,∴從袋子中隨機取出1個球,則它是黃球的概率為;故答案為:.【考點】此題考查了概率公式,明確概率的意義是解答問題的關(guān)鍵,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.四、簡答題1、.【解析】【分析】先根據(jù)可判斷出,再根據(jù)相似三角形的對應(yīng)邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長為.【考點】本題考查相似三角形性質(zhì)的應(yīng)用.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.2、(1);(2);(3)面積最大為,點坐標為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質(zhì)可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關(guān)于直線對稱,當點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設(shè)直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設(shè),則,當時,面積最大為,此時點坐標為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設(shè)N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質(zhì),靈活運用數(shù)形結(jié)合思想得到坐標之間的關(guān)系是解題的關(guān)鍵.五、解答題1、(1)a=-1;坐標為,;(2).【解析】【分析】(1)利用拋物線的對稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點坐標;(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當x=1時,y<0,即-1-2+m<0;當x=-1時,y≥0,即-1+2+m≥0,然后解兩個不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當時,,解得,,所以拋物線與軸的交點坐標為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對稱軸為直線,∵拋物線與軸的交點都在點,之間,∴當時,,即,解得;當時,,即,解得,∴的取值范圍為.【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)圖象的幾何變換.2、直徑所對的圓周角是直角經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線【分析】連接OA,OB,根據(jù)圓周角定理可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論