版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省貴溪市中考數學達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,矩形ABCD中,AD=2,AB=,對角線AC上有一點G(異于A,C),連接DG,將△AGD繞點A逆時針旋轉60°得到△AEF,則BF的長為(
)A. B.2 C. D.22、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數據,統(tǒng)計結果如下.身高人數60260550130根據以上統(tǒng)計結果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(
)A.0.32 B.0.55 C.0.68 D.0.873、如圖,將△OAB繞點O逆時針旋轉80°得到△OCD,若∠A的度數為110°,∠D的度數為40°,則∠AOD的度數是()A.50° B.60° C.40° D.30°4、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(
)A.π B.π C.π D.25、如圖,在△ABC中,∠BAC=130°,將△ABC繞點C逆時針旋轉得到△DEC,點A,B的對應點分別為D,E,連接AD.當點A,D,E在同一條直線上時,則∠BAD的大小是()A.80° B.70° C.60° D.50°二、多選題(5小題,每小題3分,共計15分)1、如圖是二次函數圖象的一部分,過點,,對稱軸為直線.則錯誤的有(
)A. B. C. D.2、下列方程中是一元二次方程的有(
)A.B.C.D.E.F.3、兩個關于的一元二次方程和,其中,,是常數,且.如果是方程的一個根,那么下列各數中,一定是方程的根的是()A. B. C.2 D.-24、下列方程一定不是一元二次方程的是(
)A. B.C. D.5、已知A、B兩點的坐標分別是(-2,3)和(2,3),則下面四個結論正確的有(
)A.A、B關于x軸對稱; B.A、B關于y軸對稱;C.A、B關于原點對稱; D.若A、B之間的距離為4第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,把分成相等的六段弧,依次連接各分點得到正六邊形ABCDEF,如果的周長為,那么該正六邊形的邊長是______.2、如圖,二次函數y=ax2+bx+c的圖象經過點A(﹣3,0),B(1,0),與y軸交于點C.下列結論:①abc>0;②3a﹣c=0;③當x<0時,y隨x的增大而增大;④對于任意實數m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號).3、如圖,已知P是函數y1圖象上的動點,當點P在x軸上方時,作PH⊥x軸于點H,連接PO.小華用幾何畫板軟件對PO,PH的數量關系進行了探討,發(fā)現PO﹣PH是個定值,則這個定值為_____.4、在平面直角坐標系中,點關于原點對稱的點的坐標是______.5、一個不透明的袋子中放有3個紅球和5個白球,這些球除顏色外均相同,隨機從袋子中摸出一球,摸到紅球的概率為_____.四、簡答題(2小題,每小題10分,共計20分)1、如圖,已知二次函數的圖象經過點.(1)求的值和圖象的頂點坐標.
(2)點在該二次函數圖象上.
①當時,求的值;②若到軸的距離小于2,請根據圖象直接寫出的取值范圍.2、已知圖中的曲線是反比例函數y=(m為常數)圖象的一支.(1)根據圖象位置,求m的取值范圍;(2)若該函數的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.五、解答題(4小題,每小題10分,共計40分)1、某超市經銷一種商品,每件成本為50元.經市場調研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?2、已知關于x的一元二次方程有兩個相等的實數根,求的值.3、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.4、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.-參考答案-一、單選題1、A【解析】【分析】過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,△AGD繞點A逆時針旋轉60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四邊形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,FH=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【詳解】解:如圖,過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,∵△AGD繞點A逆時針旋轉60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四邊形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,FH=AF=1由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB=2由勾股定理得BF=故BF的長.故選:A【考點】本題考查了圖形的旋轉,矩形的性質,含30度角的直角三角形的性質,勾股定理等知識,解決此題的關鍵在于作出正確的輔助線.2、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.3、A【分析】根據旋轉的性質求解再利用三角形的內角和定理求解再利用角的和差關系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉80°得到△OCD,∠A的度數為110°,∠D的度數為40°,故選A【點睛】本題考查的是三角形的內角和定理的應用,旋轉的性質,掌握“旋轉前后的對應角相等”是解本題的關鍵.4、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以OC為直徑的圓上,然后根據圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以OC為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質,勾股定理,正方形的判定與性質,圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.5、A【分析】根據三角形旋轉得出,,根據點A,D,E在同一條直線上利用鄰補角關系求出,根據等腰三角形的性質即可得到∠DAC=50°,由此即可求解.【詳解】證明:∵繞點C逆時針旋轉得到,∴,,∴∠ADC=∠DAC,∵點A,D,E在同一條直線上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故選A.【點睛】本題考查三角形旋轉性質,鄰補角的性質,等腰三角形的性質與判定,解題的關鍵在于熟練掌握旋轉的性質.二、多選題1、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據二次函數的對稱性進而對所得結論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據二次函數圖象的對稱性,知當x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數圖象與系數之間的關系,熟練運用對稱軸的范圍求2a與b的關系,二次函數與方程及不等式之間的關系是解決本題的關鍵.2、BCD【解析】【分析】根據一元二次方程的定義對6個選項逐一進行分析.【詳解】A中最高次數是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數且未知數最高次數為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.3、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數的值,正確理解定義是解題的關鍵.4、AB【解析】【分析】根據只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數,一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數,一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程是解答此題的關鍵.5、BD【解析】【分析】根據點坐標關于原點對稱、軸對稱的特點,求出對應點坐標即可.【詳解】點A(-2,3)關于x軸對稱的點為(-2,-3),故A錯誤點A(-2,3)關于y軸對稱的點為(2,3),故B正確點A(-2,3)關于原點對稱的點為(2,-3),故C錯誤點A、點B的縱坐標相同,故A、B之間的距離為,故D正確故選BD【考點】本題考查了點坐標關于x,y軸對稱,關于原點中心對稱的特點,以及兩點間距離公式,熟悉對應知識點是解決本題的關鍵.三、填空題1、6【分析】如圖,連接OA、OB、OC、OD、OE、OF,證明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,再求出圓的半徑即可.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF.∵正六邊形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,∵的周長為,∴的半徑為,正六邊形的邊長是6;【點睛】本題考查正多邊形與圓的關系、等邊三角形的判定和性質等知識,明確正六邊形的邊長和半徑相等是解題的關鍵.2、①④##④①【解析】【分析】根據拋物線的對稱軸,開口方向,與軸的交點位置,即可判斷①,根據二次函數y=ax2+bx+c的圖象經過點A(﹣3,0),B(1,0),即可求得對稱軸,以及當時,,進而可以判斷②③,根據頂點求得函數的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數y=ax2+bx+c的圖象經過點A(﹣3,0),B(1,0),對稱軸為,則,當,,,故②不正確,由函數圖象以及對稱軸為,可知,當時,隨的增大而增大,故③不正確,對稱軸為,則當時,取得最大值,對于任意實數m,總有,即,故④正確.故答案為:①④.【考點】本題考查了二次函數圖象的性質,數形結合是解題的關鍵.3、2【解析】【分析】設p(x,x2-1),則OH=|x|,PH=|x2-1|,因點P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設p(x,x2-1),則OH=|x|,PH=|x2-1|,當點P在x軸上方時,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點】本題考查二次函數圖象上點的坐標特征,勾股定理,利用坐標求線段長度是解題的關鍵.4、(3,4)【分析】關于原點對稱的點,橫坐標與縱坐標都互為相反數.【詳解】:由題意,得點(-3,-4)關于原點對稱的點的坐標是(3,4),故答案為:(3,4).【點睛】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于原點對稱的點,橫坐標與縱坐標都互為相反數.5、【分析】讓紅球的個數除以球的總數即為摸到紅球的概率.【詳解】解:∵紅球的個數為3個,球的總數為3+5=8(個),∴摸到紅球的概率為,故答案為:.【點睛】本題考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.四、簡答題1、(1);(2)①11;②.【解析】【分析】(1)把點P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由點Q到y(tǒng)軸的距離小于2,可得-2<m<2,在此范圍內求n即可.【詳解】(1)解:把代入,得,解得.∵,∴頂點坐標為.(2)①當m=2時,n=11,②點Q到y(tǒng)軸的距離小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【考點】本題考查二次函數的圖象及性質;熟練掌握二次函數圖象上點的特征是解題的關鍵.2、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據反比例函數系數k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數系數k的幾何意義,反比例函數的圖象與性質,根據系數k的幾何意義得出(m?5)=4是解題的關鍵.五、解答題1、(1)y=-10x+900;(2)每件銷售價為70元時,獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據等量關系“利潤=(售價﹣進價)×銷量”列出函數表達式即可.(2)根據(1)中列出函數關系式,配方后依據二次函數的性質求得利潤最大值.【詳解】解:(1)根據題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數表達式為:y=-10x+900;(2)設利潤為w,由(1)知:w=(x﹣50)(-10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年重慶醫(yī)科大學附屬第一醫(yī)院工作人員(編制外)招聘53人備考題庫及一套參考答案詳解
- 精益生產會議制度
- 豆腐車間生產制度
- 鍋爐生產管理制度
- 筷子廠安全生產制度
- 汽修安全生產值班制度
- 飲料企業(yè)安全生產制度
- 餐具生產安全責任制度
- 生產班組定置管理制度
- 制冰廠生產制度
- 校外配餐入校管理制度
- 寺廟信息服務管理制度
- 交通運輸信息化標準體系
- JJF(軍工) 186-2018 氦質譜檢漏儀校準規(guī)范
- 財務合規(guī)審查實施方案計劃
- 移動通信基站設備安裝培訓教材
- 2024-2025學年云南省昆明市盤龍區(qū)高二(上)期末數學試卷(含答案)
- 臨床成人失禁相關性皮炎的預防與護理團體標準解讀
- 創(chuàng)新創(chuàng)業(yè)教育學習通超星期末考試答案章節(jié)答案2024年
- 《最奇妙的蛋》完整版
- 三年級科學上冊蘇教版教學工作總結共3篇(蘇教版三年級科學上冊知識點整理)
評論
0/150
提交評論