版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學下冊《平行四邊形》專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,把一張長方形紙片ABCD沿AF折疊,使B點落在處,若,要使,則的度數應為()A.20° B.55° C.45° D.60°2、如圖,把矩形紙片沿對角線折疊,若重疊部分為,那么下列說法錯誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對稱圖形 D.折疊后和相等3、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.4、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.5、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.6、如圖,在四邊形中,AB∥CD,添加下列一個條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.7、如圖,點E是長方形ABCD的邊CD上一點,將ADE沿著AE對折,點D恰好折疊到邊BC上的F點,若AD=10,AB=8,那么AE長為()A.5 B.12 C.5 D.138、如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點G,連接DG、BF,給出以下結論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結論的個數是()A.1 B.2 C.3 D.49、如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得點A,C之間的距離為6cm,點B,D之間的距離為8cm,則紙條的寬為()A.5cm B.4.8cm C.4.6cm D.4cm10、如圖所示,在ABCD中,對角線AC,BD相交于點O,過點O的直線EF分別交AD于點E,BC于點F,,則ABCD的面積為(
)A.24 B.32 C.40 D.48第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過點A的直線l折疊,使點D落到AB邊上的點處,折痕交CD邊于點E.若點P是直線l上的一個動點,則+PB的最小值_______.2、如圖,矩形ABCD中,AB=9,AD=12,點M在對角線BD上,點N為射線BC上一動點,連接MN,DN,且∠DNM=∠DBC,當DMN是等腰三角形時,線段BN的長為___.3、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側作等腰Rt△ABC,則OC的長為__________________.4、已知Rt△ABC的周長是24,斜邊上的中線長是5,則S△ABC=_____.5、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.6、如圖,每個小正方形的邊長都為1,△ABC是格點三角形,點D為AC的中點,則線段BD的長為_____.7、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點,N為BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE,CE,當△CDE為等腰三角形時,線段BN的長為_____.8、如圖,正方形的邊長為4,它的兩條對角線交于點,過點作邊的垂線,垂足為,的面積為,過點作的垂線,垂足為,△的面積為,過點作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.9、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點A、B、C分別在直線l1、l2、線段PQ上,點O是斜邊AB的中點,若PQ等于,則OQ的長等于_____.10、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點P、E、F分別為線段AB、AD、DB上的動點,則PE+PF的最小值是_____.三、解答題(5小題,每小題6分,共計30分)1、在平面直角坐標系xOy中,點A(x,﹣m)在第四象限,A,B兩點關于x軸對稱,x=+n(n為常數),點C在x軸正半軸上,(1)如圖1,連接AB,直接寫出AB的長為;(2)延長AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線段OC與線段BD的關系;②如圖3,若OC=AC,連接OD.點P為線段OD上一點,且∠PBD=45°,求點P的橫坐標.2、如圖所示,正方形中,點E,F分別為BC,CD上一點,點M為EF上一點,D,M關于直線AF對稱.連結DM并延長交AE的延長線于N,求證:.3、已知:?ABCD的對角線AC,BD相交于O,M是AO的中點,N是CO的中點,求證:BM∥DN,BM=DN.
4、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.5、如圖1,正方形ABCD的邊長為a,E為邊CD上一動點(點E與點C、D不重合),連接AE交對角線BD于點P,過點P作PF⊥AE交BC于點F.(1)求證:PA=PF;(2)如圖2,過點F作FQ⊥BD于Q,在點E的運動過程中,PQ的長度是否發(fā)生變化?若不變,求出PQ的長;若變化,請說明變化規(guī)律.(3)請寫出線段AB、BF、BP之間滿足的數量關系,不必說明理由.-參考答案-一、單選題1、B【解析】【分析】設直線AF與BD的交點為G,由題意易得,則有,由折疊的性質可知,由平行線的性質可得,然后可得,進而問題可求解.【詳解】解:設直線AF與BD的交點為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質可知,∵,∴,∴,∴;故選B.【點睛】本題主要考查折疊的性質及矩形的性質,熟練掌握折疊的性質及矩形的性質是解題的關鍵.2、D【解析】【分析】根據題意結合圖形可以證明EB=ED,進而證明△ABE≌△CDE;此時可以判斷選項A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對稱圖形;綜上所述,選項A、B、C成立,∴不能證明D是正確的,故說法錯誤的是D,故選:D.【點睛】本題主要考查了翻折變換及其應用問題;解題的關鍵是靈活運用翻折變換的性質,找出圖中隱含的等量關系;借助矩形的性質、全等三角形的判定等幾何知識來分析、判斷、推理或解答.3、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點睛】本題考查了矩形的性質,熟練掌握矩形的性質是本題的關鍵.4、B【解析】【分析】根據直角三角形斜邊上中線的性質,可得斜邊為2,然后利用兩直角邊之間的關系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據直角三角形斜邊上中線的性質可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關鍵,值得學習應用.5、C【解析】【分析】根據題意由角平分線先得到是含有角的直角三角形,結合直角三角形斜邊上中線的性質進而得到OP,DP的值,再根據角平分線的性質以及垂線段最短等相關內容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質、垂線段最短等相關內容,熟練掌握相關性質定理是解決本題的關鍵.6、C【解析】【分析】由平行線的性質得,再由,得,證出,即可得出結論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點睛】本題考查了平行四邊形的判定,解題的關鍵是熟練掌握平行四邊形的判定,證明出.7、C【解析】【分析】根據矩形的性質,折疊的性質,勾股定理即可得到結論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對折,點D恰好折疊到邊BC上的F點,∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點睛】本題考查了翻折變換,矩形的性質,勾股定理等知識,解題的關鍵是學會利用參數構建方程解決問題.8、D【解析】【分析】根據正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結合①可得AG=GF,根據等高的兩個三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結論的是4個.故選:D.【點睛】本題考查了圖形的翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.9、B【解析】【分析】由題意作AR⊥BC于R,AS⊥CD于S,根據題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據勾股定理求出AB,最后利用菱形ABCD的面積建立關系得出紙條的寬AR的長.【詳解】解:作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四邊形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面積,即,解得:cm.故選:B.【點睛】本題主要考查菱形的判定以及勾股定理等知識,解題的關鍵是掌握一組鄰邊相等的平行四邊形是菱形以及菱形的面積等于對角線相乘的一半.10、B【解析】【分析】先根據平行四邊形的性質可得,再根據三角形全等的判定定理證出,根據全等三角形的性質可得,從而可得,然后根據平行四邊形的性質即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點睛】本題考查了平行四邊形的性質、三角形全等的判定定理與性質等知識點,熟練掌握平行四邊形的性質是解題關鍵.二、填空題1、【解析】【分析】不管P點在l上哪個位置,PD始終等于PD',故求PD'+PB可以轉化成求PD+PB,顯然當D、P、D'共線時PD+PB最短.【詳解】過點D作DM⊥AB交BA的延長線于點M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點D與點D′關于直線l對稱,連接BD交直線l于點P,此時PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點睛】本題考查平行四邊形性質和菱形性質,掌握這些是本題解題關鍵.2、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當NM=ND時,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當DM=DN時,此時M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當MN=MD時,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當DMN是等腰三角形時,線段BN的長為15或24或.故答案為:15或24或.【點睛】本題考查了矩形的性質、等腰三角形的判定和性質、勾股定理等知識,解題的關鍵是學會用分類討論的思想思考問題,注意不能漏解.3、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據等腰直角三角形的性質得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據等腰直角三角形的性質得到∠ABO=45°,根據勾股定理得到BC,于是得到結論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當以AB、BC為直角邊作等腰直角三角形時,與圖2的解法相同;綜上所述,OC的長為2或2,故答案為:2或2.【點睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進行分類討論是解題的關鍵.4、24【解析】【分析】先根據直角三角形的性質求解,再利用周長求解,兩邊平方結合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點D為AB中點,為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點睛】本題考查的是直角三角形斜邊上的中線的性質,勾股定理的應用,完全平方公式,三角形面積公式,掌握以上知識是解題的關鍵.5、【解析】【分析】根據題意連接BE,連接AE交FG于O,如圖,利用菱形的性質得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設AF=x,根據折疊的性質得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質以及菱形的性質,注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.6、##【解析】【分析】根據勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點D為AC的中點,∴BD為AC邊上的中線,∴BD=AC,故答案為:【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,勾股定理,勾股定理逆定理的應用,判斷出△ABC是直角三角形是解題的關鍵.7、cm或2cm【解析】【分析】分兩種情況:①如圖1,當DE=DC時,連接DM,作DG⊥BC于G,由菱形的性質得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點共線,設BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當CE=CD上,CE=CD=AD,此時點E與A重合,N與點C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當DE=DC時,連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M為AB的中點,∴AM=BM=1,由折疊的性質得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點共線,設BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當CE=CD時,CE=CD=AD,此時點E與A重合,N與點C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當△CDE為等腰三角形時,線段BN的長為cm或2cm;故答案為cm或2cm.【點睛】本題考查了折疊變換的性質、菱形的性質、全等三角形的判定與性質、三點共線、勾股定理、直角三角形的性質、等腰三角形的性質等知識,熟練掌握并靈活運用是解題的關鍵.8、【解析】【分析】由正方形的性質得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點睛】本題是圖形的變化題,考查了正方形的性質、三角形面積的計算,解題的關鍵是通過計算三角形的面積得出規(guī)律.9、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質和直角三角形的性質可求解.【詳解】解:如圖,連接PO,并延長交l2于點H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點O是斜邊AB的中點,∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點睛】本題主要考查了全等三角形的判定和性質,等腰三角形和直角三角形的性質,熟練掌握全等三角形的判定和性質定理,等腰三角形和直角三角形的性質定理是解題的關鍵.10、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,求出ME即可.【詳解】解:作出F關于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,此時P′E′+P′F=ME′,過點A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點睛】本題考查翻折變換,等腰三角形的性質,軸對稱?最短問題等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.三、解答題1、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被開方數是非負數,求出m=3,判斷出A,B兩點坐標,可得結論;(2)①結論:OC=BD,OC∥BD.連接AB交x軸于點T.利用等腰三角形的三線合一的性質得出OC=2CT,利用三角形中位線定理得出CT∥BD,BD=2CT,由此即可得;②連接AB交OC于點T,過點P作PH⊥OC于H.證明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出結論.【詳解】解:(1)由題意,,∴m=3,∴x=n,∴A(n,﹣3),∵A,B關于x軸對稱,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案為:6;(2)①結論:OC=BD,OC∥BD.理由:如圖,連接AB交x軸于點T.
∵A,B關于x軸對稱,∴AB⊥OC,AT=TB,∵AO=AC,∴OT=CT(等腰三角形的三線合一),∴OC=2CT,∵AC=CD,AT=TB,∴CT∥BD,BD=2CT,∴OC=BD,OC∥BD;②如圖,連接AB交OC于點T,過點作于點,,,∵AC=OC=CD,∴∠COA=∠OAC,∠COD=∠CDO,∴2∠OAC+2∠CDO=180°,∴∠OAC+∠CDO=90°,∴∠AOD=90°,∵A,B關于x軸對稱,∴OT⊥AB,OA=OB,∴∠OBT=∠OAT,∵∠COD+∠AOC=90°,∠AOC+∠OAT=90°,∴∠OAT=∠COD,∴∠OBT=∠COD,即∠OBT=∠POH,∵BD∥OC,∴∠PDB=∠POH=∠OBT,∠ABD=90°,∵∠PBD=45°,∴∠ABP=45°,∵∠OBP=∠OBT+∠ABP=∠OBT+45°,∠OPB=∠PBD+∠PDB=45°+∠PDB,∴∠OBP=∠OPB,∴OB=PO,在和中,,∴△OTB≌△PHO(AAS),∴BT=OH=3,故點P的橫坐標為3.【點睛】本題考查了坐標與軸對稱變化、三角形中位線定理、等腰三角形的三線合一等知識點,較難的是題(2)②,通過作輔助線,構造全等三角形是解題關鍵.2、見解析【分析】連結,由對稱的性質可知,進而可證,即可得,由∠AON=9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025貴州興義市人民醫(yī)院引進高層次、急需緊缺人才100人備考題庫及一套答案詳解
- 電商會計財務制度
- 生產經營類企業(yè)財務制度
- 石油公司財務制度
- 2026江蘇南京大學招聘備考題庫XZ2025-428醫(yī)學院專業(yè)、技術人員備考題庫有完整答案詳解
- 學校社團章程財務制度
- 公款私存違反財務制度
- 制造業(yè)財務制度
- 人壽保險業(yè)務財務制度
- 協(xié)會5A認證財務制度
- 河北省NT名校聯合體2025-2026學年高三上學期1月月考英語(含答案)
- 2025-2026學年滬科版八年級數學上冊期末測試卷(含答案)
- 途虎養(yǎng)車安全培訓課件
- 衛(wèi)生管理研究論文
- 2025-2026學年人教版(新教材)小學數學二年級下冊(全冊)教學設計(附教材目錄P161)
- 委托市場調研合同范本
- 畜牧安全培訓資料課件
- 2025年度黨支部書記述職報告
- 2026四川省引大濟岷水資源開發(fā)限公司公開招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2026年安徽糧食工程職業(yè)學院高職單招職業(yè)適應性考試備考試題及答案詳解
- 內科學總論小兒遺傳代謝病課件
評論
0/150
提交評論