達(dá)標(biāo)測試人教版9年級數(shù)學(xué)上冊《圓》專項測試試題(解析版)_第1頁
達(dá)標(biāo)測試人教版9年級數(shù)學(xué)上冊《圓》專項測試試題(解析版)_第2頁
達(dá)標(biāo)測試人教版9年級數(shù)學(xué)上冊《圓》專項測試試題(解析版)_第3頁
達(dá)標(biāo)測試人教版9年級數(shù)學(xué)上冊《圓》專項測試試題(解析版)_第4頁
達(dá)標(biāo)測試人教版9年級數(shù)學(xué)上冊《圓》專項測試試題(解析版)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊《圓》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,點A,B的坐標(biāo)分別為,點C為坐標(biāo)平面內(nèi)一點,,點M為線段的中點,連接,則的最大值為()A. B. C. D.2、如圖,AB是的直徑,點B是弧CD的中點,AB交弦CD于E,且,,則(

)A.2 B.3 C.4 D.53、如圖,在中,,cm,cm.是邊上的一個動點,連接,過點作于,連接,在點變化的過程中,線段的最小值是(

)A.1 B. C.2 D.4、下列4個說法中:①直徑是弦;②弦是直徑;③任何一條直徑所在的直線都是圓的對稱軸;④弧是半圓;正確的有(

)A.1個 B.2個 C.3個 D.4個5、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°6、在平面直角坐標(biāo)系中,⊙O的半徑為2,點A(1,)與⊙O的位置關(guān)系是(

)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定7、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.48、下列說法:(1)長度相等的弧是等??;(2)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長的弦.其中正確的有(

)A.1個 B.2個 C.3個 D.4個9、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m10、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無法判斷第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,邊長相等的正五邊形和正六邊形拼接在一起,則∠ABC的度數(shù)為________.2、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點A,半徑為;的圓心為點B,半徑為;的圓心為點C,半徑為;的圓心為點D,半徑為;…的圓心依次按點A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.3、一個扇形的弧長是,面積是,則這個扇形的圓心角是___度.4、如圖,正方形ABCD,邊長為4,點P和點Q在正方形的邊上運動,且PQ=4,若點P從點B出發(fā)沿B→C→D→A的路線向點A運動,到點A停止運動;點Q從點A出發(fā),沿A→B→C→D的路線向點D運動,到達(dá)點D停止運動.它們同時出發(fā),且運動速度相同,則在運動過程中PQ的中點O所經(jīng)過的路徑長為_____.5、如圖,在的方格紙中,每個小方格都是邊長為1的正方形,其中A、B、C為格點,作的外接圓,則的長等于_____.6、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結(jié)果保留).7、如圖,已知點C是⊙O的直徑AB上的一點,過點C作弦DE,使CD=CO.若AD的度數(shù)為35°,則的度數(shù)是_____.8、如圖,是的直徑,弦于點E,,,則的半徑_______.9、如圖,拋物線的圖象與坐標(biāo)軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當(dāng)沿半圓從點運動至點時,點運動的路徑長是__________.10、如圖,一個底面半徑為3的圓錐,母線,D為的中點,一只螞蟻從點A出發(fā),沿著圓錐的側(cè)面爬行到D,則螞蟻爬行的最短路程為______.三、解答題(5小題,每小題6分,共計30分)1、如圖,直線l:y=2x+1與拋物線C:y=2x2+bx+c相交于點A(0,m),B(n,7).(1)填空:m=,n=,拋物線的解析式為.(2)將直線l向下移a(a>0)個單位長度后,直線l與拋物線C仍有公共點,求a的取值范圍.(3)Q是拋物線上的一個動點,是否存在以AQ為直徑的圓與x軸相切于點P?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.2、如圖,AD、BC是⊙O的兩條弦,且AB=CD,求證:AD=BC.3、如圖,在中,,以為直徑的⊙O與相交于點,過點作⊙O的切線交于點.(1)求證:;(2)若⊙O的半徑為,,求的長.4、如圖,已知⊙O為Rt△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),且∠C=90°,AB=13,BC=12.(1)求BF的長;(2)求⊙O的半徑r.5、已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.(1)求證:△ABC是等腰三角形;(2)當(dāng)OA=4,AB=6,求邊BC的長.-參考答案-一、單選題1、B【解析】【分析】如圖所示,取AB的中點N,連接ON,MN,根據(jù)三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點N,連接ON,MN,三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點,∴ON=,又∵M(jìn)為AC的中點,∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關(guān)鍵是確定當(dāng)ON與MN共線時,OM=ON+MN最大.2、C【解析】【分析】是的直徑,點是弧的中點,從而可知,然后利用勾股定理即可求出的長度.【詳解】解:設(shè)半徑為,連接,是的直徑,點是弧的中點,由垂徑定理可知:,且點是的中點,,,由勾股定理可知:,由勾股定理可知:,解得:,故選:C.【考點】本題考查垂徑定理,解題的關(guān)鍵是正確理解垂徑定理以及勾股定理,本題屬于中等題型3、A【解析】【分析】由∠AEC=90°知,點E在以AC為直徑的⊙M的上(不含點C、可含點N),從而得BE最短時,即為連接BM與⊙M的交點(圖中點E′點),BE長度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點、可含點,最短時,即為連接與的交點(圖中點點),在中,,,則.,長度的最小值,故選:.【考點】本題主要考查了勾股定理,圓周角定理,三角形的三邊關(guān)系等知識點,難度偏大,解題時,注意輔助線的作法.4、B【解析】【分析】根據(jù)弧的分類、圓的性質(zhì)逐一判斷即可.【詳解】解:①直徑是最長的弦,故正確;②最長的弦才是直徑,故錯誤;③過圓心的任一直線都是圓的對稱軸,故正確;④半圓是弧,但弧不一定是半圓,故錯誤,正確的有兩個,故選B.【考點】本題考查了對圓的認(rèn)識,熟知弦的定義、弧的分類是本題的關(guān)鍵.5、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【考點】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)點A的坐標(biāo),求出OA=2,根據(jù)點與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點A在⊙O上.故選:A.【考點】本題考查了點和圓的位置關(guān)系,點和圓的位置關(guān)系是由點到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時,點在圓外;(2)當(dāng)時,點在圓上;(3)當(dāng)時,點在圓內(nèi).7、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應(yīng)的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應(yīng)的實數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點,是解題的關(guān)鍵.8、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項.【詳解】解:(1)長度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯誤;(2)直徑是圓中最長的弦,故(2)錯誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯誤;正確的只有一個,故選:A.【考點】本題考查了圓的有關(guān)定義,能夠了解圓的有關(guān)知識是解答本題的關(guān)鍵,難度不大.9、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點】本題考查了垂徑定理和勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.10、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.二、填空題1、24°【解析】【分析】根據(jù)正五邊形的內(nèi)角和和正六邊形的內(nèi)角和公式求得正五邊形的每個內(nèi)角為108°和正六邊形的每個內(nèi)角為120°,然后根據(jù)周角的定義和等腰三角形性質(zhì)可得結(jié)論.【詳解】解:由題意得:正六邊形的每個內(nèi)角都等于120°,正五邊形的每個內(nèi)角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=故答案是:.【考點】考查了正多邊形的內(nèi)角與外角、等腰三角形的性質(zhì),熟練掌握正五邊形的內(nèi)角和正六邊形的內(nèi)角求法是解題的關(guān)鍵.2、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點】此題主要考查了弧長的計算,弧長的計算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.3、150【解析】【分析】根據(jù)弧長公式計算.【詳解】根據(jù)扇形的面積公式可得:,解得r=24cm,再根據(jù)弧長公式,解得.故答案為:150.【考點】本題考查了弧長的計算及扇形面積的計算,要記熟公式:扇形的面積公式,弧長公式.4、【解析】【分析】【詳解】解:畫出點O運動的軌跡,如圖虛線部分,則點P從B到A的運動過程中,PQ的中點O所經(jīng)過的路線長等于3π,故答案為:3π.5、【解析】【分析】由AB、BC、AC長可推導(dǎo)出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點】本題考查了弧長的計算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.6、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.7、105°.【解析】【分析】連接OD、OE,根據(jù)圓心角、弧、弦的關(guān)系定理求出∠AOD=35°,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計算即可.【詳解】解:連接OD、OE,∵的度數(shù)為35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,∵OD=OE,∴∠ODC=∠E=35°,∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,∴∠AOE=∠DOE-∠AOD=110°-35°=75°,∴∠BOE=180°-∠AOE=180°-75°=105°,∴的度數(shù)是105°.故答案為105°.【考點】本題考查了圓心角、弧、弦的關(guān)系定理:在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦也相等.8、【解析】【分析】設(shè)半徑為r,則,得到,由垂徑定理得到,再根據(jù)勾股定理,即可求出答案.【詳解】解:由題意,設(shè)半徑為r,則,∵,∴,∵是的直徑,弦于點E,∴點E是CD的中點,∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案為:.【考點】本題考查了垂徑定理,勾股定理,解題的關(guān)鍵是熟練掌握垂徑定理和勾股定理進(jìn)行解題.9、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,如圖,∴點運動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運動路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.10、【解析】【分析】先畫出圓錐側(cè)面展開圖(見解析),再利用弧長公式求出圓心角的度數(shù),然后利用等邊三角形的判定與性質(zhì)、勾股定理可得,最后根據(jù)兩點之間線段最短即可得.【詳解】畫出圓錐側(cè)面展開圖如下:如圖,連接AB、AD,設(shè)圓錐側(cè)面展開圖的圓心角的度數(shù)為,因為圓錐側(cè)面展開圖是一個扇形,扇形的弧長等于底面圓的周長,扇形的半徑等于母線長,所以,解得,則,又,是等邊三角形,點D是BC的中點,,,在中,,由兩點之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點】本題考查了圓錐側(cè)面展開圖、弧長公式、等邊三角形的判定與性質(zhì)等知識點,熟練掌握圓錐側(cè)面展開圖是解題關(guān)鍵.三、解答題1、(1)1,3,y=2x2﹣4x+1(2)0<a(3)存在,P(1,0)或P(,0)【解析】【分析】(1)將A(0,m),B(n,7)代入y=2x+1,可求m、n的值,再將A(0,1),B(3,7)代入y=2x2+bx+c,可求函數(shù)解析式;(2)由題意可得y=2x+1-a,聯(lián)立,得到2x2-6x+a=0,再由判別式Δ≥0即可求a是取值范圍;(3)設(shè)Q(t,s),則,半徑,再由AQ2=t2+(s-1)2=(s+1)2,即可求t的值.(1)將A(0,m),B(n,7)代入y=2x+1,可得m=1,n=3,∴A(0,1),B(3,7),再將A(0,1),B(3,7)代入y=2x2+bx+c得,,可得,∴y=2x2﹣4x+1,故答案為:1,3,y=2x2﹣4x+1;(2)由題意可得y=2x+1﹣a,聯(lián)立,∴2x2﹣6x+a=0,∵直線l與拋物線C仍有公共點∴Δ=36﹣8a≥0,∴a,∴0<a;(3)存在以AQ為直徑的圓與x軸相切,理由如下:設(shè)Q(t,s),∴M(,),P(,0),∴半徑r,∵AQ2=t2+(s﹣1)2=(s+1)2,∴t2=4s,∵s=2t2﹣4t+1,∴t2=4(2t2﹣4t+1),∴t=2或t,∴P(1,0)或P(,0),∴以AQ為直徑的圓與x軸相切時,P點坐標(biāo)為P(1,0)或P(,0).,【考點】本題考查二次函數(shù)的綜合應(yīng)用,熟練掌握二次函數(shù)的圖象及性質(zhì),平行線的性質(zhì)是解題的關(guān)鍵.2、證明見解析.【解析】【分析】根據(jù)AB=CD,得出,進(jìn)而得出,即可解答.【詳解】證明:∵AB,CD是⊙O的兩條弦,且AB=CD,∴,∴,∴,∴AD=BC.【考點】此題考查圓心角、弧、弦的關(guān)系,關(guān)鍵是利用三者的關(guān)系解答.3、(1)見詳解;(2)4.8.【解析】【分析】(1)連接OD,由AB=AC,OB=OD,則∠B=∠ODB=∠C,則OD∥AC,由DE為切線,即可得到結(jié)論成立;(2)連接AD,則有AD⊥BC,得到BD=CD=8,求出AD=6,利用三角形的面積公式,即可求出DE的長度.【詳解】解:連接OD,如圖:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切線,∴OD⊥DE,∴AC⊥DE;(2)連接AD,如(1)圖,∵AB為直徑,AB=AC,∴AD是等腰三角形ABC的高,也是中線,∴CD=BD=,∠ADC=90°,∵AB=AC=,由勾股定理,得:,∵,∴;【考點】本題主要考查的是切線的性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理,解題的關(guān)鍵是熟練掌握所學(xué)的性質(zhì)定理,正確的求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論