云南省香格里拉市中考數(shù)學試卷及參考答案詳解【基礎題】_第1頁
云南省香格里拉市中考數(shù)學試卷及參考答案詳解【基礎題】_第2頁
云南省香格里拉市中考數(shù)學試卷及參考答案詳解【基礎題】_第3頁
云南省香格里拉市中考數(shù)學試卷及參考答案詳解【基礎題】_第4頁
云南省香格里拉市中考數(shù)學試卷及參考答案詳解【基礎題】_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省香格里拉市中考數(shù)學試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.2、如圖,正方形邊長為4,、、、分別是、、、上的點,且.設、兩點間的距離為,四邊形的面積為,則與的函數(shù)圖象可能是(

)A. B. C. D.3、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米4、2020年7月20日,寧津縣人民政府印發(fā)《津縣城市生活垃圾分類制度實施方案》的通知,全面推行生活垃圾分類.下列垃圾分類標志分別是廚余垃圾、有害垃圾、其他垃圾和可回收物,其中既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.5、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形二、多選題(5小題,每小題3分,共計15分)1、關于拋物線y=(x﹣2)2+1,下列說法不正確的是(

)A.開口向上,頂點坐標(﹣2,1)

B.開口向下,對稱軸是直線x=2C.開口向下,頂點坐標(2,1)

D.當x>2時,函數(shù)值y隨x值的增大而增大2、下面一元二次方程的解法中,不正確的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=13、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4、如圖在四邊形中,,,,為的中點,以點為圓心、長為半徑作圓,恰好使得點在圓上,連接,若,則下列說法中正確的是(

)A.是劣弧的中點 B.是圓的切線C. D.5、二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標為(-1,n),其部分圖象如圖所示.下列結論正確的是(

)A.B.C.若,是拋物線上的兩點,則D.關于x的方程無實數(shù)根第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、北侖梅山所產的草莓柔嫩多汁,芳香味美,深受消費者喜愛.有一草莓種植大戶,每天草莓的采摘量為300千克,當草莓的零售價為22元/千克時,剛好可以全部售完.經(jīng)調查發(fā)現(xiàn),零售價每上漲1元,每天的銷量就減少30千克,而剩余的草莓可由批發(fā)商以18元/千克的價格統(tǒng)一收購走,則當草莓零售價為___元時,該種植戶一天的銷售收入最大.2、在一個暗箱里放入除顏色外其它都相同的1個紅球和11個黃球,攪拌均勻后隨機任取一球,取到紅球的概率是_____.3、背面完全相同的四張卡片,正面分別寫著數(shù)字-4,-1,2,3,背面朝上并洗勻,從中隨機抽取一張,將卡片上的數(shù)字記為,再從余下的卡片中隨機抽取一張,將卡片上的數(shù)字記為,則點在第四象限的概率為__________.4、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.5、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.四、簡答題(2小題,每小題10分,共計20分)1、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達式與反比例函數(shù)y2的表達式;(2)當y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當時,請求出點P的坐標.2、如圖,AB為⊙O直徑,AC為弦,過⊙O外的點D作DE⊥OA于點E,交AC于點F,連接DC并延長交AB的延長線于點H,且∠D=2∠A.(1)求證:DC與⊙O相切;(2)若⊙O半徑為4,,求AC的長.五、解答題(4小題,每小題10分,共計40分)1、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當E,F(xiàn)兩點中有一點到達終點時,另一點也停止運動.當△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.2、如圖,矩形ABCD中,AB=6cm,BC=12cm..點M從點A開始沿AB邊向點B以1cm/秒的速度向B點移動,點N從點B開始沿BC邊以2cm/秒的速度向點C移動.若M,N分別從A,B點同時出發(fā),設移動時間為t(0<t<6),△DMN的面積為S.(1)求S關于t的函數(shù)關系式,并求出S的最小值;(2)當△DMN為直角三角形時,求△DMN的面積.3、如圖,方格中,每個小正方形的邊長都是單位1,△ABC的位置如圖.(1)畫出將△ABC向右平移2個單位得到的△A1B1C1;(2)畫出將△ABC繞點O順時針方向旋轉90°得到的△A2B2C2;(3)寫出C2點的坐標.4、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.-參考答案-一、單選題1、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關鍵.2、A【解析】【分析】本題考查了動點的函數(shù)圖象,先判定圖中的四個小直角三角形全等,再用大正方形的面積減去四個直角三角形的面積,得函數(shù)y的表達式,結合選項的圖象可得答案.【詳解】解:∵正方形ABCD邊長為4,AE=BF=CG=DH∴AH=BE=CF=DG,∠A=∠B=∠C=∠D∴△AEH≌△BFE≌△CGF≌△DHG∴y=4×4-x(4-x)×4=16-8x+2x2=2(x-2)2+8∴y是x的二次函數(shù),函數(shù)的頂點坐標為(2,8),開口向上,從4個選項來看,開口向上的只有A和B,C和D圖象開口向下,不符合題意;但是B的頂點在x軸上,故B不符合題意,只有A符合題意.故選:A.【考點】本題考查了動點問題的函數(shù)圖象,正確地寫出函數(shù)解析式并數(shù)形結合分析是解題的關鍵.3、B【解析】【分析】根據(jù)題意,可以畫出相應的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標系,由題意可得MN=4,EF=14,BC=10,DO=,設大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設點A(b,0),則設頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標為-7,∴點E坐標為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應用,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.4、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念去判斷即可.【詳解】A、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;B、是軸對稱圖形也是中心對稱圖形,故滿足題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;D、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形,關鍵是緊扣軸對稱圖形和中心對稱圖形的概念.5、D【分析】根據(jù)旋轉的性質推出相等的邊CE=CF,旋轉角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉的性質,掌握圖形旋轉前后的大小和形狀不變是解決問題的關鍵.二、多選題1、ABC【解析】【分析】由拋物線的解析式可求得其對稱軸、開口方向、頂點坐標,進一步可得出其增減性,可得出答案.【詳解】解:∵y=(x﹣2)2+1,∴拋物線開口向上,對稱軸為直線x=2,頂點坐標為(2,1),∴A、B、C不正確;當x>2時,y隨x的增大而增大,∴D正確,故選:ABC.【考點】本題主要考查二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=中,對稱軸為直線x=h,頂點坐標為(h,k).2、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.3、AB【解析】【分析】根據(jù)軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關鍵是熟記其概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.4、ABC【解析】【分析】直接利用圓周角定理以及結合圓心角、弧、弦的關系、切線的判定方法、平行線的判定方法、四邊形內角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項錯誤.故選擇ABC.【考點】此題主要考查了切線的判定以及圓周角與弧的關系、四邊形內角和、平行線的判定方法等知識,正確掌握相關判定方法是解題關鍵.5、CD【解析】【分析】根據(jù)二次函數(shù)的性質及與x軸另一交點的位置,即可判定A;當x=2時,即可判定B;根據(jù)對稱性及二次函數(shù)的性質,可判定C;根據(jù)平移后與x軸有無交點,可判定D.【詳解】解:由圖象可知:該二次函數(shù)圖象的對稱軸為直線,∴b=2a,由圖象可知:該二次函數(shù)圖象與x軸的左側交點在-3與-2之間,故與x軸的另一個交點在0與1之間,∴當x=1時,y<0,即a+b+c<0,3a+c<0,故A錯誤;當x=-2時,y>0,即4a-2b+c>0,故B錯誤;點關于對稱軸對稱的點的坐標為,即,在對稱軸的左側y隨x的增大而增大,故,故C正確;該二次函數(shù)的頂點坐標為(?1,n),將函數(shù)向下平移n+1個單位,函數(shù)圖象與x軸無交點,∴方程無實數(shù)根,故D正確,故選:CD.【考點】本題考查了二次函數(shù)圖象與性質,根據(jù)二次函數(shù)的圖象判定式子是否成立,解題的關鍵是從圖象中找到相關信息.三、填空題1、25【解析】【分析】設草莓的零售價為x元/千克,銷售收入為y元,由題意得y=30x2+1500x11880,再根據(jù)二次函數(shù)的性質解答即可.【詳解】解:設草莓的零售價為x元/千克,銷售收入為y元,由題意得,y=x[30030(x22)]+18×30(x22)=30x2+1500x11880,當時,y最大,∴當草莓的零售價為25元/千克時,種植戶一天的銷售收入最大.故答案為:25.【考點】本題考查二次函數(shù)的實際應用,熟練掌握二次函數(shù)的性質是解題關鍵.2、【分析】由題意可知,共有12個球,取到每個球的機會均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點睛】本題考查簡單事件的概率,是基礎考點,掌握相關知識是解題關鍵.3、【分析】第四象限點的特征是,所以當橫坐標只能為2或3,縱坐標只能是或,畫出列表圖或樹狀圖,算出滿足條件的情況,進一步求得概率即可.【詳解】如下圖:-4-123-4-123∵第四象限點的坐標特征是,∴滿足條件的點分別是:,共4種情況,又∵從列表圖知,共有12種等可能性結果,∴點在第四象限的概率為.故答案為:【點睛】本題主要考察概率的求解,要熟悉樹狀圖或列表圖的要點是解題關鍵.4、2【解析】【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點E的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當x=0時,y=x+1=1,∴點E的坐標為(0,1).當y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,利用二次函數(shù)圖象上點的坐標特征求出點P,Q的坐標是解題的關鍵.5、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質,頂點式的變形及拋物線的平移,關鍵在于根據(jù)對稱軸的性質從題意中判斷出對稱軸.四、簡答題1、(1),;(2)當y1<y2,時,自變量x的取值范圍為x>8或0<x<2;(3)點P的坐標為(3,0)或(-3,0).【解析】【分析】(1)利用待定系數(shù)法確定解析式即可;(2)利用數(shù)形結合的思想,分析兩個函數(shù)圖象的位置,根據(jù)交點的橫坐標確定滿足條件的解集即可.(3)先利用分割法求出的面積,利用求出的面積,由面積公式列式求解即可.【詳解】解:(1)將,代入中,得解得:∴反比例函數(shù)y2的表達式為:將,代入中,得:解得:∴一次函數(shù)y1的表達式為:(2)由圖象可知,當時,反比例函數(shù)圖象應在一次函數(shù)圖象上方∴自變量x的取值范圍為:或(3)設直線AB與x軸的交點為D,如下圖:∵延長AO交反比例函數(shù)圖象于點C∴點C與點A關于原點對稱∴設直線AB交x軸的交點為D將代入∴∴又∵∴即:∴∵點P在x軸上∴或【考點】本題考查待定系數(shù)法求一次函數(shù)與反比例函數(shù)的解析式,通過圖象交點情況確定滿足條件的自變量取值范圍等知識點,能夠利用數(shù)形結合思想是解題的關鍵.2、(1)證明見解析(2)【解析】【分析】(1)連接OC,由圓周角定理和已知條件得出∠BOC=∠D,證出∠OCH=90°,得出DC⊥OC,即可得出結論;(2)作AG⊥CD于G,則AG∥OC,由三角函數(shù)定義求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,證△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.【詳解】(1)證明:連接OC,如圖1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥OC,∴DC與⊙O相切;(2)作AG⊥CD于G,如圖2所示:則AG∥OC,∵DC⊥OC,∴∠OCH=90°,∵∠BOC=∠D,OC=4,∴cos∠BOC==,∴OH=OC=5,∴AH=OA+OH=4+5=9,CH===3,∵AG∥OC,∴△OCH∽△AGH,∴===,∴AG=OC=,GH=CH=,∴CG=GH﹣CH=﹣3=,∴AC===.【考點】本題考查圓的綜合問題,涉及切線的判定、勾股定理、銳角三角函數(shù),相似三角形等知識,屬于中等題型.熟練掌握圓的切線的證明方法以及圓周角定理是解題的關鍵.五、解答題1、(6-)s【解析】【分析】設點E運動的時間是x秒.根據(jù)題意可得方程,解方程即可得到結論.【詳解】解:設點E運動的時間是xs.根據(jù)題意可得22+(2x)2=(3-2x)2+x2,解這個方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴兩點運動了1.5s后停止運動.∴x=6-.答:當△AEF是以AF為底邊的等腰三角形時,點E運動的時間是(6-)s.【考點】本題考查了一元二次方程的應用,考查了矩形的性質,等腰三角形的判定及性質,勾股定理的運用.2、(1)27(2)【解析】【分析】(1)根據(jù)t秒時,M、N兩點的運動路程,分別表示出AM、BM、BN、CN的長度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進行列式即可得到S關于t的函數(shù)關系式,通過配方即可求得最小值;(2)當△DMN為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論