難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)測試練習(xí)題(含答案解析)_第1頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)測試練習(xí)題(含答案解析)_第2頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)測試練習(xí)題(含答案解析)_第3頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)測試練習(xí)題(含答案解析)_第4頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)測試練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點(diǎn)O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點(diǎn),則這個(gè)點(diǎn)表示的實(shí)數(shù)是()A.2.5 B.2 C. D.2、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.133、如圖,在長方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長是()A.4 B.3 C.4或8 D.3或64、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o5、在ABCD中,添加以下哪個(gè)條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD6、已知直線,點(diǎn)P在直線l上,點(diǎn),點(diǎn),若是直角三角形,則點(diǎn)P的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數(shù)為()A.36° B.30° C.27° D.18°8、如圖,正方形的面積為256,點(diǎn)F在上,點(diǎn)E在的延長線上,的面積為200,則的長為()A.10 B.11 C.12 D.159、如圖,在矩形ABCD中,點(diǎn)O為對角線BD的中點(diǎn),過點(diǎn)O作線段EF交AD于F,交BC于E,OB=EB,點(diǎn)G為BD上一點(diǎn),滿足EG⊥FG,若∠DBC=30°,則∠OGE的度數(shù)為()A.30° B.36° C.37.5° D.45°10、如圖,DE是ABC的中位線,點(diǎn)F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.1.5 C.4 D.5第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.2、如圖,每個(gè)小正方形的邊長都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長為_____.3、點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),△ABC的周長為24,則△DEF的周長為______.4、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.5、如圖,O為坐標(biāo)原點(diǎn),△ABO的兩個(gè)頂點(diǎn)A(6,0),B(6,6),點(diǎn)D在邊AB上,點(diǎn)C在邊OA上,且BD=AC=1,點(diǎn)P為邊OB上的動(dòng)點(diǎn),則PC+PD的最小值為_____.6、如圖,正方形的邊長為4,它的兩條對角線交于點(diǎn),過點(diǎn)作邊的垂線,垂足為,的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.7、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.8、如圖,在正方形ABCD中,點(diǎn)M,N為CD,BC上的點(diǎn),且DM=CN,AM與DN交于點(diǎn)P,連接AN,點(diǎn)Q為AN中點(diǎn),連接PQ,若AB=10,DM=4,則PQ的長為__________________.9、在平行四邊形ABCD中,若∠A=130°,則∠B=______,∠C=______,∠D=______.10、如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則EF=_____cm.三、解答題(5小題,每小題6分,共計(jì)30分)1、在如圖所示的4×3網(wǎng)格中,每個(gè)小正方形的邊長均為1,正方形頂點(diǎn)叫格點(diǎn),連接兩個(gè)網(wǎng)格格點(diǎn)的線段叫網(wǎng)格線段.點(diǎn)A固定在格點(diǎn)上.(1)若a是圖中能用網(wǎng)格線段表示的最小無理數(shù),b是圖中能用網(wǎng)格線段表示的最大無理數(shù),則a=,b=,=;(2)請?jiān)诰W(wǎng)格中畫出頂點(diǎn)在格點(diǎn)上且邊長為的所有菱形ABCD,你畫出的菱形面積分別為,.2、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.3、(1)先化簡,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如圖,菱形ABCD中,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.證明:四邊形AECF是矩形.4、如圖,在矩形中,,,且四邊形是一個(gè)正方形,試問點(diǎn)F是的黃金分割點(diǎn)嗎?請說明理由.(補(bǔ)全解題過程)5、如圖,正方形ABCD中,點(diǎn)E在BC的延長線上,AE分別交DC,BD于F,G,點(diǎn)H為EF的中點(diǎn).求證:(1)∠DAG=∠DCG;(2)GC⊥CH.-參考答案-一、單選題1、D【解析】【分析】利用矩形的性質(zhì),求證明,進(jìn)而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點(diǎn)表示,求出弧與數(shù)軸交點(diǎn)表示的實(shí)數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點(diǎn)的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.2、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí),熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.3、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點(diǎn)睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.4、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點(diǎn)睛】考查菱形的邊的性質(zhì),同時(shí)綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關(guān)鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).5、D【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形,結(jié)合選項(xiàng)找到對角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項(xiàng)A不符合題意;B、C選項(xiàng),同A選項(xiàng)一樣,均為鄰邊垂直,ABCD是矩形;故選項(xiàng)B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項(xiàng)D符合題意故選D【點(diǎn)睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關(guān)鍵.6、C【解析】【分析】分別討論,,三種情況,求出點(diǎn)坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,代入中得:,,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,,代入中得:,,當(dāng)時(shí),取中點(diǎn)為點(diǎn),過點(diǎn)作交于點(diǎn),設(shè),,,,,,,,,在中,,解得:,,點(diǎn)有3個(gè).故選:C.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類討論的思想是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)已知條件可得以及的度數(shù),然后求出各角的度數(shù)便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點(diǎn)睛】題目主要考查矩形的性質(zhì),三角形內(nèi)角和及等腰三角形的性質(zhì),理解題意,綜合運(yùn)用各個(gè)性質(zhì)是解題關(guān)鍵.8、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計(jì)算CE,根據(jù)正方形ABCD的面積計(jì)算BC,根據(jù)勾股定理計(jì)算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因?yàn)镽t△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點(diǎn)睛】本題考查了正方形,等腰直角三角形面積的計(jì)算,考查了直角三角形中勾股定理的運(yùn)用,本題中求證CF=CE是解題的關(guān)鍵.9、C【解析】【分析】根據(jù)矩形和平行線的性質(zhì),得;根據(jù)等腰三角形和三角形內(nèi)角和性質(zhì),得;根據(jù)全等三角形性質(zhì),通過證明,得;根據(jù)直角三角形斜邊中線、等腰三角形、三角形內(nèi)角和性質(zhì),推導(dǎo)得,再根據(jù)余角的性質(zhì)計(jì)算,即可得到答案.【詳解】∵矩形ABCD∴∴∵OB=EB,∴∴∵點(diǎn)O為對角線BD的中點(diǎn),∴和中∴∴∵EG⊥FG,即∴∴∴故選:C.【點(diǎn)睛】本題考查了矩形、平行線、全等三角形、等腰三角形、三角形內(nèi)角和、直角三角形的知識(shí);解題的關(guān)鍵是熟練掌握矩形、全等三角形、等腰三角形、直角三角形斜邊中線的性質(zhì),從而完成求解.10、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進(jìn)而可得答案.【詳解】解:∵D為AB中點(diǎn),∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點(diǎn)睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.二、填空題1、8【解析】【分析】根據(jù)正方形的軸對稱的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進(jìn)行計(jì)算即可得解.【詳解】解:×4×4=8.故答案為:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會(huì)于轉(zhuǎn)化的思想思考問題.2、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.3、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點(diǎn),可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點(diǎn),∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點(diǎn)睛】本題考查了三角形的中位線定理,根據(jù)中點(diǎn)判斷出中位線,再利用中位線定理是解題的基本思路.4、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.5、6【解析】【分析】過點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,得矩形ACPD,正方形OCPE,此時(shí)PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時(shí)PC+PD的值最小,為6.故答案為:6.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線段最短問題.6、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過計(jì)算三角形的面積得出規(guī)律.7、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.8、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握正方形的性質(zhì).9、【解析】【分析】利用平行四邊形的性質(zhì):鄰角互補(bǔ),對角相等,即可求得答案.【詳解】解:在平行四邊形ABCD中,、是的鄰角,是的對角,,,故答案為:,,.【點(diǎn)睛】本題主要是考查了平行四邊形的性質(zhì):對角相等,鄰角互補(bǔ),熟練掌握平行四邊形的性質(zhì),求解決本題的關(guān)鍵.10、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點(diǎn)E、F分別是AO、AD的中點(diǎn),∴EF=OD=2.5cm,故答案為:2.5.【點(diǎn)睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長及證明EF=OD.三、解答題1、(1),2,;(2)4或5.【分析】(1)借助網(wǎng)格得出最大的無理數(shù)以及最小的無理數(shù),進(jìn)而求出即可;(2)根據(jù)要求周長邊長為的菱形即可.【詳解】解:(1)由題意得:a=,b=2,

∴;

故答案為:,2,;(2)如圖1,2中,菱形ABCD即為所求.

菱形ABCD的面積為=×4×2=4或菱形ABCD的面積=×=5,

故答案為:4或5.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì)作圖,無理數(shù),勾股定理,菱形的性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,正確作出圖形解決問題.2、(1)見解析;(2)平行四邊形DEFB的周長=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點(diǎn)D,E分別是AC,AB的中點(diǎn),∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點(diǎn),AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長=2(DE+BD)=2(4+10)=28(cm).【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識(shí);熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關(guān)鍵.3、(1),0;(2)證明見解析.【分析】(1)根據(jù)整式的乘法運(yùn)算法則先去括號,然后合并同類項(xiàng)化簡,然后代入求解即可;(2)首先根據(jù)菱形的性質(zhì)得到,,然后根據(jù)E、F分別

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論