版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對2、菱形ABCD的對角線AC,BD相交于點O,E,F(xiàn)分別是AD,CD邊上的中點,連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.83、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為()A. B. C. D.4、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的是()A.當(dāng)?ABCD是矩形時,∠ABC=90° B.當(dāng)?ABCD是菱形時,AC⊥BDC.當(dāng)?ABCD是正方形時,AC=BD D.當(dāng)?ABCD是菱形時,AB=AC5、如圖,DE是ABC的中位線,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.1.5 C.4 D.56、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.167、在ABCD中,添加以下哪個條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD8、如圖,在平面直角坐標(biāo)系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.109、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:210、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、點D、E、F分別是△ABC三邊的中點,△ABC的周長為24,則△DEF的周長為______.2、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點A、B、C分別在直線l1、l2、線段PQ上,點O是斜邊AB的中點,若PQ等于,則OQ的長等于_____.3、如圖,矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.4、如圖,在△ABC中,D,E分別是邊AB,AC的中點,∠B=50°.現(xiàn)將△ADE沿DE折疊點A落在三角形所在平面內(nèi)的點為A1,則∠BDA1的度數(shù)為_____.5、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.6、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.7、如圖,四邊形ABCD是矩形,延長DA到點E,使AE=DA,連接EB,點F1是CD的中點,連接EF1,BF1,得到△EF1B;點F2是CF1的中點,連接EF2,BF2,得到△EF2B;點F3是CF2的中點,連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進(jìn)行下去,若矩形ABCD的面積等于2,則△EFnB的面積為______.(用含正整數(shù)n的式子表示)8、如圖,平面直角坐標(biāo)系中,有,,三點,以A,B,O三點為頂點的平行四邊形的另一個頂點D的坐標(biāo)為______.9、已知長方形ABCD中,AB=4,BC=10,M為BC中點,P為AD上的動點,則以B、M、P為頂點組成的等腰三角形的底邊長是______________________.10、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.三、解答題(5小題,每小題6分,共計30分)1、在ABC中,D、E、F分別是AB、AC、BC的中點,連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長線于點G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.2、如圖1,在平面直角坐標(biāo)系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運(yùn)動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運(yùn)動,當(dāng)其中一點到達(dá)終點時整個運(yùn)動都停止.①若的一條邊與BC平行,求此時點M的坐標(biāo);②若點E是邊AC的中點,在點M運(yùn)動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標(biāo);若不能,請說明理由.3、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.4、如圖,正方形網(wǎng)格中每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.試畫出一個頂點都在格點上,且面積為10的正方形.5、如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.
(1)在方格紙中畫出以AB為對角線的正方形AEBF,點E、F在小正方形的頂點上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長.-參考答案-一、單選題1、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.2、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.3、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點E到點B的距離為:.故選:C.【點睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運(yùn)算,利用對折得到,再利用勾股定理列方程是解本題的關(guān)鍵.4、D【解析】【分析】由矩形的四個角是直角可判斷A,由菱形的對角線互相垂直可判斷B,由正方形的對角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時,∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時,AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時,AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時,AB=BC,故D符合題意;故選D【點睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.5、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進(jìn)而可得答案.【詳解】解:∵D為AB中點,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.6、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.7、D【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形,結(jié)合選項找到對角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項A不符合題意;B、C選項,同A選項一樣,均為鄰邊垂直,ABCD是矩形;故選項B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項D符合題意故選D【點睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關(guān)鍵.8、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關(guān)系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.9、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時,應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.10、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.二、填空題1、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點,∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點睛】本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.2、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質(zhì)和直角三角形的性質(zhì)可求解.【詳解】解:如圖,連接PO,并延長交l2于點H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點O是斜邊AB的中點,∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點睛】本題主要考查了全等三角形的判定和性質(zhì),等腰三角形和直角三角形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理,等腰三角形和直角三角形的性質(zhì)定理是解題的關(guān)鍵.3、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點E為BC的中點,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.4、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點睛】本題主要考查了翻折變換及其應(yīng)用問題;同時還考查了三角形的中位線定理等幾何知識點.熟練掌握各性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關(guān)于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關(guān)于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì),勾股定理等知識,構(gòu)造平行四邊形將AN轉(zhuǎn)化為DM是解題的關(guān)鍵.6、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點A′在過點A且平行于BD的定直線上,作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點A′在過點A且平行于BD的定直線上,∴作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.7、.【解析】【分析】由AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點F2是CF1的中點,∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關(guān)鍵是根據(jù)面積找出規(guī)律.8、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標(biāo)相等,根據(jù)B的橫坐標(biāo)和BO的值即可求出D的橫坐標(biāo).【詳解】∵平行四邊形ABCD的頂點A、B、O的坐標(biāo)分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標(biāo)是3+6=9,縱坐標(biāo)是4,即D的坐標(biāo)是(9,4),同理可得出D的坐標(biāo)還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點睛】本題考查了坐標(biāo)與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對邊平行且相等.9、5或或【解析】【分析】分三種情況:①當(dāng)BP=PM時,點P在BM的垂直平分線上,取BM的中點N,過點N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當(dāng)BM=PM=5時,當(dāng)∠PMB為銳角如圖2時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長;③當(dāng)BM=PM=5時,當(dāng)∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長;即可求解.【詳解】解:BC=10,M為BC中點,∴BM=5,當(dāng)△BMP為等腰三角形時,分三種情況:①當(dāng)BP=PM時,點P在AM的垂直平分線上,取BM的中點N,過點N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長為5②當(dāng)BM=PM=5時,當(dāng)∠PMB為銳角如圖2時,則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當(dāng)BM=PM=5時,當(dāng)∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點組成的等腰三角形的底邊長是:5或或故答案為:5或或.【點睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識,熟練掌握矩形的性質(zhì),進(jìn)行分類討論是解題的關(guān)鍵.10、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識,解題的關(guān)鍵是熟練掌握正方形的性質(zhì).三、解答題1、(1)見解析;(2)DECF,DEFB,EGCF,AEFD【分析】(1)根據(jù)鄰邊相等的平行四邊形是菱形即可證明;(2)利用等高模型即可解決問題.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點,∴DE、DF分別是△ABC中BC邊、AC邊上的中位線,∴DE∥BC,DE=BC,DF∥AC,DF=AC,∵DE∥FC,DF∥EC,∴四邊形DECF為平行四邊形,又∵AC=BC,∴DF=DE,∴為菱形;(2)∵,,∴四邊形是平行四邊形,∴與ADG面積相等的平行四邊形有:DECF,DEFB,EGCF,AEFD.【點睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、三角形中位線定理,等高模型等知識,解題的關(guān)鍵是熟練掌握菱形的判定方法,屬于中考??碱}型.2、(1)見解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.
【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長,即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時,;當(dāng)時,;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點坐標(biāo)為(12,0),B點坐標(biāo)為(-8,0),C點坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時,∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)N∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點,∵,∴,∴,∴點M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時,同理可得,∴,∴M點的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;
②如圖3-3所示,當(dāng)OM=OE時,∵E是AC的中點,∠AOC=90°,,∴,∴此時M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年營口市高職單招職業(yè)技能考前練習(xí)試題及答案解析
- 2025年信陽市高職單招綜合素質(zhì)考前預(yù)測試題及答案解析
- 2025年注冊心理咨詢師《專業(yè)技能考試》備考試題及答案解析
- 2025年版PMP考試內(nèi)部題庫全考點含答案解析
- 2025年心理學(xué)心理評估與治療模擬考試答案及解析
- 上海市上海市奉賢區(qū)2025科目一模擬考試100題附答案解析
- 2026年河南職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試模擬測試卷附答案解析
- 保定河北保定市人民醫(yī)院招聘工作人員40人筆試歷年參考題庫附帶答案詳解
- 云南2025年西南林業(yè)大學(xué)招聘4名編外職工(二)筆試歷年參考題庫附帶答案詳解
- 麗江2025年云南麗江職業(yè)技術(shù)學(xué)院第三輪急需緊缺專業(yè)人才招聘筆試歷年參考題庫附帶答案詳解
- 【地理】期末重點復(fù)習(xí)課件-2025-2026學(xué)年八年級地理上學(xué)期(人教版2024)
- 2026年鄉(xiāng)村治理體系現(xiàn)代化試題含答案
- 通風(fēng)設(shè)備采購與安裝合同范本
- 化工設(shè)備清洗安全課件
- 2026元旦主題班會:馬年猜猜樂新春祝福版 教學(xué)課件
- T∕ZZB 1815-2020 塑料 汽車配件用再生聚碳酸酯(PC)專用料
- 2025~2026學(xué)年吉林省吉林市一中高一10月月考語文試卷
- 天津市南開中學(xué)2025-2026學(xué)年高一上數(shù)學(xué)期末調(diào)研模擬試題含解析
- 麻辣燙創(chuàng)業(yè)商業(yè)計劃書范文
- 東呈集團(tuán)內(nèi)部控制中存在的問題及對策研究
- 高科技產(chǎn)業(yè)園區(qū)運(yùn)營管理手冊
評論
0/150
提交評論