版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省濟源市中考數(shù)學考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°2、拋物線的對稱軸為直線.若關于的一元二次方程(為實數(shù))在的范圍內(nèi)有實數(shù)根,則的取值范圍是()A. B. C. D.3、在中,AB,CD為兩條弦,下列說法:①若,則;②若,則;③若,則弧AB=2弧CD;④若,則.其中正確的有(
)A.1個 B.2個 C.3個 D.4個4、把四張撲克牌所擺放的順序與位置如下,小楊同學選取其中一張撲克牌把他顛倒后在放回原來的位置,那么撲克牌的擺放順序與位置都沒變化,那么小楊同學所選的撲克牌是(
)A. B. C. D.5、已知拋物線P:,將拋物線P繞原點旋轉(zhuǎn)180°得到拋物線,當時,在拋物線上任取一點M,設點M的縱坐標為t,若,則a的取值范圍是(
)A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結(jié)論正確的是(
)A.a(chǎn)+b+c<0B.a(chǎn)bc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<42、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點.下列結(jié)論中正確的是(
)A.拋物線與x軸的另一個交點坐標是B.C.若拋物線經(jīng)過點,則關于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個單位,則新拋物線的表達式為3、下列說法不正確的是(
)A.經(jīng)過三個點有且只有一個圓B.經(jīng)過兩點的圓的圓心是這兩點連線的中點C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心4、下列說法中,正確的有()A.等弧所對的圓心角相等B.經(jīng)過三點可以作一個圓C.平分弦的直徑垂直于這條弦D.圓的內(nèi)接平行四邊形是矩形5、下列說法正確的是(
)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知二次函數(shù),當分別取時,函數(shù)值相等,則當取時,函數(shù)值為______.2、要利用一面很長的圍墻和100米長的隔離欄建三個如圖所示的矩形羊圈,若計劃建成的三個羊圈總面積為400平方米,則羊圈的邊長AB為多少米?設AB=x米,根據(jù)題意可列出方程的為_________.3、在平面直角坐標系中,二次函數(shù)過點(4,3),若當0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.4、某農(nóng)科所為了深入踐行“綠水青山就是金山銀山”的理念,大力開展對植物生長的研究,該農(nóng)科所在相同條件下做某植物種子發(fā)芽率的試驗,得到的結(jié)果如下表所示:種子個數(shù)1002003004005006007008009001000…發(fā)芽種子個數(shù)94188281349435531625719812902…發(fā)芽種子頻率(結(jié)果保留兩位小數(shù))0.940.940.940.870.870.890.890.900.900.90…根據(jù)頻率的穩(wěn)定性,估計這種植物種子不發(fā)芽的概率是______.5、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),與y軸交于點C.下列結(jié)論:①abc>0;②3a﹣c=0;③當x<0時,y隨x的增大而增大;④對于任意實數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號).四、簡答題(2小題,每小題10分,共計20分)1、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數(shù)量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,若,,求的長.2、如圖,在△ABC中,D,E分別是AC,AB上的點,∠ADE=∠B.△ABC的角平分線AF交DE于點G,交BC于點F.(1)求證:△ADG∽△ABF;(2)若,AF=6,求GF的長.五、解答題(4小題,每小題10分,共計40分)1、正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.(1)如圖①,若點E在上,F(xiàn)是DE上的一點,DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關系:DE-BE=AE.請說明理由;(3)如圖②,若點E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.2、判斷2、5、-4是不是一元二次方程的根3、解下列方程:(1);(2).4、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個交點,交點的橫坐標分別為x1,x2,當x12+x22=10時,求k的值;(3)當﹣4<x≤m時,y有最大值,求m的值.-參考答案-一、單選題1、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關的角度是解題關鍵.2、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內(nèi)有實數(shù)根,當時,,當時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶崝?shù)根問題轉(zhuǎn)化為二次函數(shù)與直線的交點問題,借助數(shù)形結(jié)合解題是關鍵.3、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關系解答即可.【詳解】①若,則,正確;②若,則,故不正確;③由不能得到弧AB=2弧CD,故不正確;④若,則,錯誤.故選A.【考點】本題考查了圓心角、弧、弦之間的關系,在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對的其余各組量都分別相等.也考查了等腰三角形的性質(zhì).4、D【解析】【分析】根據(jù)題意,圖形是中心對稱圖形即可得出答案.【詳解】由題意可知,圖形是中心對稱圖形,可得答案為D,故選:D.【考點】本題考查了圖形的中心對稱的性質(zhì),掌握中心圖形的性質(zhì)是解題的關鍵.5、A【解析】【分析】先求出拋物線的解析式,再列出不等式,求出其解集或,從而可得當x=1時,,有成立,最后求出a的取值范圍.【詳解】解:∵拋物線P:,將拋物線P繞原點旋轉(zhuǎn)180°得到拋物線,∴拋物線P與拋物線關于原點對稱,設點(x,y)在拋物線P’上,則點(-x,-y)一定在拋物線P上,∴∴拋物線的解析式為,∵當時,在拋物線上任取一點M,設點M的縱坐標為t,若,即令,∴,解得:或,設,∵開口向下,且與x軸的兩個交點為(0,0),(4a,0),即當時,要恒成立,此時,∴當x=1時,即可,得:,解得:,又∵∴故選A【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).二、多選題1、ABD【解析】【分析】根據(jù)題意可得點A(﹣4,0)關于對稱軸的對稱點,從而得到當時,,再由,可得在對稱軸右側(cè)隨的增大而增大,從而得到當時,;根據(jù)圖象可得,,可得;再由,可得;然后根據(jù)P(﹣6,y1)關于對稱軸的對稱點,可得當y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關于對稱軸的對稱點,即當時,,∵拋物線開口向上,∴,∴在對稱軸右側(cè)隨的增大而增大,∴當時,,故A正確;∵拋物線與交于負半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關于對稱軸的對稱點,∴當y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),并利用數(shù)形結(jié)合思想解答是解題的關鍵.2、ABD【解析】【分析】結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)進行判斷即可求解【詳解】∵拋物線開口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當y=0時,方程的根為-1和3,∴拋物線與x軸的另一個交點為(3,0),即A項正確;將點(-3,m)代入到拋物線方程,可得m=12a,∵結(jié)合k=-4a,∴方程,化簡為:,∵a<0,∴,即,顯然方程無實數(shù)解,故C項說法錯誤;向左平移3個單位,依據(jù)左加右減原則,可得新拋物線為:,即D說法正確,故選:ABD.【考點】本題考查了拋物線的性質(zhì)與圖象的知識,解答本題時需注重運用數(shù)形結(jié)合的思想.3、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質(zhì)求解即可;D.根據(jù)三角形外心的性質(zhì)求解即可;【詳解】解:A、如果三個點在一條直線上,不存在經(jīng)過這三個點的圓,故選項錯誤,符合題意;B、經(jīng)過兩點的圓的所有圓心在兩點連線的垂直平分線上,不僅僅是這兩點連線的中點,故選項錯誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點,在三角形外部,選項正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點,不是其中心,故選項錯誤,符合題意;故選:ABD.【考點】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識,解題的關鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.4、AD【解析】【分析】根據(jù)圓的有關概念及性質(zhì),對選項逐個判斷即可.【詳解】解:A.等弧是能夠完全重合的弧,因此等弧所對的圓心角相等,正確,符合題意;B.經(jīng)過不在同一直線上的三點可以作一個圓,故原命題錯誤,不符合題意;C.平分弦(不是直徑)的直徑垂直于這條弦,故原命題錯誤,不符合題意;D.圓的內(nèi)接平行四邊形是矩形,正確,符合題意,正確的有A、D,故答案為:A、D.【考點】此題考查了圓的有關概念及性質(zhì),解題的關鍵是熟練掌握圓的相關概念以及性質(zhì).5、ABD【解析】【分析】根據(jù)圓的相關知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎題.三、填空題1、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關系,從而可以得到2x1+2x2的值,進而可以求得當x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.2、x(100-4x)=400【解析】【分析】由題意,得BC的長為(100-4x)米,根據(jù)矩形面積列方程即可.【詳解】解:設AB為x米,則BC的長為(100-4x)米由題意,得x(100-4x)=400故答案為:x(100-4x)=400.【考點】本題主要考查了一元二次方程的實際問題,解決問題的關鍵是通過圖形找到對應關系量,根據(jù)等量關系式列方程.3、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點的坐標特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的性質(zhì)是解題的關鍵.4、0.1【分析】大量重復試驗下“發(fā)芽種子”的頻率可以估計“發(fā)芽種子”的概率,據(jù)此求解.【詳解】觀察表格發(fā)現(xiàn)隨著實驗次數(shù)的增多頻率逐漸穩(wěn)定在0.9附近,故“發(fā)芽種子”的概率估計值為0.9.∴這種植物種子不發(fā)芽的概率是0.1.故答案為:0.1.【點睛】本題考查了利用頻率估計概率的知識,解題的關鍵是了解大量重復試驗中某個事件發(fā)生的頻率能估計概率.5、①④##④①【解析】【分析】根據(jù)拋物線的對稱軸,開口方向,與軸的交點位置,即可判斷①,根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),即可求得對稱軸,以及當時,,進而可以判斷②③,根據(jù)頂點求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),對稱軸為,則,當,,,故②不正確,由函數(shù)圖象以及對稱軸為,可知,當時,隨的增大而增大,故③不正確,對稱軸為,則當時,取得最大值,對于任意實數(shù)m,總有,即,故④正確.故答案為:①④.【考點】本題考查了二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合是解題的關鍵.四、簡答題1、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點】本題考查了正方形、矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,正確尋找全等三角形或相似三角形解決問題,學會利用參數(shù)構建方程解決問題,是解題的關鍵.2、(1)見解析;(2)2【解析】【分析】(1)由角平分線的定義可得∠DAG=∠BAF,再由∠ADE=∠B,即可證明△ADG∽△ABF;(2)由△ADG∽△ABF,可得,即可得到,則GF=AF-AG=2.【詳解】解:(1)∵AF平分∠BAC,∴∠DAG=∠BAF,∵∠ADE=∠B,∴△ADG∽△ABF;(2)∵△ADG∽△ABF,∴,∵,,∴,∴GF=AF-AG=2.【考點】本題主要考查了角平分線的定義,相似三角形的性質(zhì)與判定,解題的關鍵在于能夠熟練掌握相似三角形的性質(zhì)與判定條件.五、解答題1、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點共線;根據(jù)BC=CD,得,從而推導得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的知識;解題的關鍵是熟練掌握正方形、圓周角、正多邊形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蜜蜂養(yǎng)殖場生產(chǎn)制度
- 消毒生產(chǎn)設備采購制度
- 生產(chǎn)指揮車輛管理制度
- 車站安全生產(chǎn)告誡制度
- 農(nóng)業(yè)生產(chǎn)廢棄物制度
- 林業(yè)生產(chǎn)用工管理制度
- 2026浙江南方水泥有限公司校園招聘參考考試試題附答案解析
- 直接生產(chǎn)費用報銷制度
- 廚房生產(chǎn)內(nèi)控制度
- 車間設備生產(chǎn)安全制度
- 2024-2025學年湖北省新高考聯(lián)考協(xié)作體高一上學期12月聯(lián)考生物B及答案
- 攻擊面管理技術應用指南 2024
- 波形護欄施工質(zhì)量控制方案
- 電梯井道腳手架搭設方案
- DL∕T 622-2012 立式水輪發(fā)電機彈性金屬塑料推力軸瓦技術條件
- 傳染病學-病毒性肝炎
- 重慶市沙坪壩小學小學語文五年級上冊期末試卷
- 陶瓷巖板應用技術規(guī)程
- 中藥制劑技術中職PPT完整全套教學課件
- 龍虎山正一日誦早晚課
- WORD版A4橫版密封條打印模板(可編輯)
評論
0/150
提交評論