北京育英中學(xué)八年級上冊壓軸題數(shù)學(xué)模擬試卷及答案_第1頁
北京育英中學(xué)八年級上冊壓軸題數(shù)學(xué)模擬試卷及答案_第2頁
北京育英中學(xué)八年級上冊壓軸題數(shù)學(xué)模擬試卷及答案_第3頁
北京育英中學(xué)八年級上冊壓軸題數(shù)學(xué)模擬試卷及答案_第4頁
北京育英中學(xué)八年級上冊壓軸題數(shù)學(xué)模擬試卷及答案_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京育英中學(xué)八年級上冊壓軸題數(shù)學(xué)模擬試卷及答案一、壓軸題1.完全平方公式:適當?shù)淖冃?,可以解決很多的數(shù)學(xué)問題.例如:若,求的值.解:因為所以所以得.根據(jù)上面的解題思路與方法,解決下列問題:(1)若,求的值;(2)①若,則;②若則;(3)如圖,點是線段上的一點,以為邊向兩邊作正方形,設(shè),兩正方形的面積和,求圖中陰影部分面積.解析:(1)12;(2)①6;②17;(3)【解析】【分析】(1)根據(jù)完全平方公式的變形應(yīng)用,解決問題;(2)①兩邊平方,再將代入計算;②兩邊平方,再將代入計算;(3)由題意可得:,,兩邊平方從而得到,即可算出結(jié)果.【詳解】解:(1);;;又;,,∴.(2)①,;又,.②由,;又,.(3)由題意可得,,;,;,;圖中陰影部分面積為直角三角形面積,,.【點睛】本題主要考查了完全平方公式的適當變形靈活應(yīng)用,(1)可直接應(yīng)用公式變形解決問題.(2)①②小題都需要根據(jù)題意得出兩個因式和或者差的結(jié)果,合并同類項得①,②是解決本題的關(guān)鍵,再根據(jù)完全平方公式變形應(yīng)用得出答案.(3)根據(jù)幾何圖形可知選段,再根據(jù)兩個正方形面積和為18,利用完全平方公式變形應(yīng)用得到,再根據(jù)直角三角形面積公式得出答案.2.(1)如圖1,和都是等邊三角形,且,,三點在一條直線上,連接,相交于點,求證:.(2)如圖2,在中,若,分別以,和為邊在外部作等邊,等邊,等邊,連接、、恰交于點.①求證:;②如圖2,在(2)的條件下,試猜想,,與存在怎樣的數(shù)量關(guān)系,并說明理由.解析:(1)詳見解析;(2)①詳見解析;②,理由詳見解析【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)得出BC=AC,CE=CD,∠ACB=∠DCE=60°,進而得出∠BCE=∠ACD,判斷出(SAS),即可得出結(jié)論;(2)①同(1)的方法判斷出(SAS),(SAS),即可得出結(jié)論;②先判斷出∠APB=60°,∠APC=60°,在PE上取一點M,使PM=PC,證明是等邊三角形,進而判斷出(SAS),即可得出結(jié)論.【詳解】(1)證明:∵和都是等邊三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,∴(SAS),∴BE=AD;(2)①證明:∵和是等邊三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴(SAS),∴AD=BE,同理:(SAS),∴AD=CF,即AD=BE=CF;②解:結(jié)論:PB+PC+PD=BE,理由:如圖2,AD與BC的交點記作點Q,則∠AQC=∠BQP,由①知,,∴∠CAD=∠CBE,在中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在中,∠APB=180°-(∠CBE+∠BQP)=60°,∴∠DPE=60°,同理:∠APC=60°,∠CPD=120°,在PE上取一點M,使PM=PC,∴是等邊三角形,∴,∠PCM=∠CMP=60°,∴∠CME=120°=∠CPD,∵是等邊三角形,∴CD=CE,∠DCE=60°=∠PCM,∴∠PCD=∠MCE,∴(SAS),∴PD=ME,∴BE=PB+PM+ME=PB+PC+PD.【點睛】此題是三角形綜合題,主要考查了三角形的內(nèi)角和定理,等邊三角形的性質(zhì)和判定,全等三角形的判定和性質(zhì),構(gòu)造出全等三角形是解本題的關(guān)鍵.3.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點D.求∠BDC的大?。ㄓ煤恋拇鷶?shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE的平分線交于點F,求∠BFC的大?。ㄓ煤恋拇鷶?shù)式表示);(3)在(2)的條件下,將△FBC以直線BC為對稱軸翻折得到△GBC,∠GBC的平分線與∠GCB的平分線交于點M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).解析:(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形內(nèi)角和可求∠ABC+∠ACB=180°﹣α,由角平分線的性質(zhì)可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的內(nèi)角和定理可求解;(2)由角平分線的性質(zhì)可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性質(zhì)可求解;(3)由折疊的性質(zhì)可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【詳解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分線與∠ACE的平分線交于點F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分線與∠GCB的平分線交于點M,∴方法同(1)可得∠BMC=90°+,∵將△FBC以直線BC為對稱軸翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【點睛】此題考查三角形的內(nèi)角和定理,三角形的外角等于與它不相鄰的兩個內(nèi)角的和,角平分線的性質(zhì)定理,折疊的性質(zhì).4.(閱讀材料):(1)在中,若,由“三角形內(nèi)角和為180°”得.(2)在中,若,由“三角形內(nèi)角和為180°”得.(解決問題):如圖①,在平面直角坐標系中,點C是x軸負半軸上的一個動點.已知軸,交y軸于點E,連接CE,CF是∠ECO的角平分線,交AB于點F,交y軸于點D.過E點作EM平分∠CEB,交CF于點M.(1)試判斷EM與CF的位置關(guān)系,并說明理由;(2)如圖②,過E點作PE⊥CE,交CF于點P.求證:∠EPC=∠EDP;(3)在(2)的基礎(chǔ)上,作EN平分∠AEP,交OC于點N,如圖③.請問隨著C點的運動,∠NEM的度數(shù)是否發(fā)生變化?若不變,求出其值:若變化,請說明理由.解析:(1)EM⊥CF,理由見解析;(2)證明見解析;(3)不變,且∠NEM=45°,理由見解析.【解析】【分析】(1)EM⊥CF,分別利用角平分線的性質(zhì)、平行線的性質(zhì)、三角形的內(nèi)角和定理進行求證即可;(2)根據(jù)垂直定義和三角形的內(nèi)角和定理證得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和對頂角相等即可證得結(jié)論;(3)不變,且∠NEM=45°,先利用平行線的性質(zhì)得到∠AEC=∠ECO=2∠ECP,進而有∠AEP=∠CEP+∠AEC=90°+2∠ECP,再由角平分線的定義∠NEP=∠AEN=45°+∠ECP,再根據(jù)同角的余角相等得到∠ECP=∠MEP,然后等量代換證得∠NEM=45°,是定值.【詳解】解:(1)EM⊥CF,理由如下:∵CF平分∠ECO,EM平分∠FEC,∴∠ECF=∠FCO=,∠FEM=∠CEM=∵AB∥x軸∴∠ECO+∠CEF=180°∴∠EMC=180°-(∠CEM+∠ECF)=180°-90°=90°∴EM⊥CF(2)由題得,∠EOC=90°∴∠DCO+∠CDO=180°-∠EOC=180°-90°=90°∵PE⊥CE∴∠CEP=90°∴∠ECP+∠EPC=180°-∠CEP=180°-90°=90°∵∠DCO=∠ECP∴∠CDO=∠EPC又∵∠CDO=∠EDP∴∠EPC=∠EDP(3)不變,且∠NEM=45°,理由如下:∵AB∥x軸∴∠AEC=∠ECO=2∠ECP∴∠AEP=∠CEP+∠AEC=90°+2∠ECP∵EN平分∠AEP∴∠NEP=∠AEN===45°+∠ECP∵∠CEP=90°∴∠ECP+∠EPC=90°又∵∠EMC=90°∴∠MEP+∠EPC=90°∴∠ECP=∠MEP∴∠NEP=∠NEM+∠MEP=∠NEM+∠ECP又∵∠NEP=45°+∠ECP∴∠NEM=45°.【點睛】本題是一道綜合探究題,涉及有平行線的性質(zhì)、角平分線的定義、三角形的內(nèi)角和定理、同(等)角的余角相等、對頂角相等、垂線性質(zhì)等知識,解答的關(guān)鍵是認真審題,結(jié)合圖形,尋找相關(guān)聯(lián)信息,確定解題思路,進而探究、推理、論證.5.如圖,在中,,,點D在邊BC上運動(點D不與點重合),連接AD,作,DE交邊AC于點E.(1)當時,,(2)當DC等于多少時,,請說明理由;(3)在點D的運動過程中,的形狀可以是等腰三角形嗎?若可以,請求出的度數(shù);若不可以,請說明理由.解析:(1)30,100;(2),見解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出∠DEC;(2)當AB=DC時,利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設(shè)ΔADE是等腰三角形,分為三種情況討論:①當DA=DE時,求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;②當AD=AE時,∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時不符合;③當EA=ED時,求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當時,,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當時,∵,∴∴∵∴②當時,∵∴又∵∴∴點D與點B重合,不合題意.③當時,∴∵∴綜上所述,當?shù)亩葦?shù)為或時,是等腰三角形.【點睛】本題考查的是等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、靈活運用分情況討論思想是解題的關(guān)鍵.6.在△ABC中,AB=AC,D是直線BC上一點,以AD為一條邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.(1)如圖,當點D在BC延長線上移動時,若∠BAC=40°,則∠ACE=,∠DCE=,BC、DC、CE之間的數(shù)量關(guān)系為;(2)設(shè)∠BAC=α,∠DCE=β.①當點D在BC延長線上移動時,α與β之間有什么數(shù)量關(guān)系?請說明理由;②當點D在直線BC上(不與B,C兩點重合)移動時,α與β之間有什么數(shù)量關(guān)系?請直接寫出你的結(jié)論.(3)當CE∥AB時,若△ABD中最小角為15°,試探究∠ACB的度數(shù)(直接寫出結(jié)果,無需寫出求解過程).解析:(1)70°,40°,BC+DC=CE;(2)①α=β;②當點D在BC上移動時,α=β或α+β=180°;(3)∠ACB=60°.【解析】【分析】(1)證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)和全等三角形的性質(zhì)求出即可;(2)①證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可;②分三種情況:(Ⅰ)當D在線段BC上時,證明△ABD≌△ACE(SAS),則∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;(Ⅱ)當點D在線段BC反向延長線上時,α=β,同理可證明△ABD≌△ACE(SAS),則∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;(Ⅲ)當點D在線段BC的延長線上時,由①得α=β;(3)當點D在線段BC的延長線上或在線段BC反向延長線上移動時,α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易證∠ABC=∠ACB=∠BAC,則△ABC是等邊三角形,得出∠ACB=60°;當D在線段BC上時,α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易證∠ABC=∠ACB=∠BAC,則△ABC是等邊三角形,得出∠ACB=60°.【詳解】(1)如圖1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B(180°﹣40°)=70°,BD=CE,∴BC+DC=CE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=40°,∴∠DCE=40°.故答案為:70°,40°,BC+DC=CE;(2)①當點D在線段BC的延長線上移動時,α與β之間的數(shù)量關(guān)系是α=β.理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;②分三種情況:(Ⅰ)當D在線段BC上時,α+β=180°,如圖2所示.理由如下:同理可證明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE.∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°.∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°;(Ⅱ)當點D在線段BC反向延長線上時,α=β,如圖3所示.理由如下:同理可證明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;(Ⅲ)當點D在線段BC的延長線上時,如圖1所示,α=β;綜上所述:當點D在BC上移動時,α=β或α+β=180°;(3)∠ACB=60°.理由如下:∵當點D在線段BC的延長線上或在線段BC反向延長線上移動時,α=β,即∠BAC=∠DCE.∵CE∥AB,∴∠ABC=∠DCE,∴∠ABC=∠BAC.∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等邊三角形,∴∠ACB=60°;∵當D在線段BC上時,α+β=180°,即∠BAC+∠DCE=180°.∵CE∥AB,∴∠ABC+∠DCE=180°,∴∠ABC=∠BAC.∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等邊三角形,∴∠ACB=60°;綜上所述:當CE∥AB時,若△ABD中最小角為15°,∠ACB的度數(shù)為60°.【點睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、平行線的性質(zhì)、三角形的外角性質(zhì)和多邊形內(nèi)角和等知識.本題綜合性強,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.7.如圖,在中,,,點為內(nèi)一點,且.(1)求證:;(2)若,為延長線上的一點,且.①求的度數(shù).②若點在上,且,請判斷、的數(shù)量關(guān)系,并說明理由.③若點為直線上一點,且為等腰,直接寫出的度數(shù).解析:(1)證明見解析;(2)①;②,理由見解析;③7.5°或15°或82.5°或150°【解析】【分析】(1)利用線段的垂直平分線的性質(zhì)即可證明;(2)①利用SSS證得△ADC≌△BDC,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解題;②連接MC,易證△MCD為等邊三角形,即可證明△BDC≌△EMC即可解題;③分EN=EC、EN=CN、CE=CN三種情形討論,畫出圖形,利用等腰三角形的性質(zhì)即可求解.【詳解】(1)∵CB=CA,DB=DA,∴CD垂直平分線段AB,∴CD⊥AB;(2)①在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ACD=∠BCD=∠BCA=45°,∠CAD=∠CBD=15°,∴∠BDC=180-45°-15°=120°;②結(jié)論:ME=BD,理由:連接MC,∵,,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM,∠CDE=60°,∴△MCD為等邊三角形,∴CM=CD,∵EC=CA=CB,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC和△EMC中,,∴△BDC≌△EMC(AAS),∴ME=BD;③當EN=EC時,∠=7.5°或∠==82.5°;當EN=CN時,∠==150°;當CE=CN時,點N與點A重合,∠CNE=15°,所以∠CNE的度數(shù)為7.5°或15°或82.5°或150°.【點睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的性質(zhì)和判定等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考壓軸題.8.(概念認識)如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分線BD交AC于點D,則∠BDC=°;(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰AB三分線和∠ACB鄰AC三分線,且BP⊥CP,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點P.若∠A=m°,∠B=n°,直接寫出∠BPC的度數(shù).(用含m、n的代數(shù)式表示)解析:(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m【解析】【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點.分四種情況畫圖:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,再根據(jù),,即可求出的度數(shù).【詳解】解:(1)如圖,當是“鄰三分線”時,;當是“鄰三分線”時,;故答案為:85或100;(2),,,又、分別是鄰三分線和鄰三分線,,,,,在中,.(3)分4種情況進行畫圖計算:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時,;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時,;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時,;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,①當時,;②當時,.【點睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握三角形的外角性質(zhì).注意要分情況討論.9.(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.①請直接寫出∠AEB的度數(shù)為_____;②試猜想線段AD與線段BE有怎樣的數(shù)量關(guān)系,并證明;(2)拓展探究:圖2,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE=90°,點A、D、E在同-直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.解析:(1)①60°;②AD=BE.證明見解析;(2)∠AEB=90°;AE=2CM+BE;理由見解析.【解析】【分析】(1)①由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).②由△ACD≌△BCE,可得AD=BE;(2)首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進而判斷出∠AEB的度數(shù)為90°;根據(jù)DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM.【詳解】(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°?∠CDE=120°,∴∠AEB=∠CEB?∠CED=60°;②AD=BE.證明:∵△ACD≌△BCE,∴AD=BE.(2)∠AEB=90°;AE=2CM+BE;理由如下:∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角△DCE中,CM為斜邊DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.【點睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的性質(zhì)、三角形全等的判定與性質(zhì)等知識,解題時需注意運用已有的知識和經(jīng)驗解決相似問題.10.如圖(1),AB=4,AC⊥AB,BD⊥AB,AC=BD=3.點P在線段AB上以1的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為(s).(1)若點Q的運動速度與點P的運動速度相等,當=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點Q的運動速度為,是否存在實數(shù),使得△ACP與△BPQ全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.解析:(1)全等,垂直,理由詳見解析;(2)存在,或【解析】【分析】(1)在t=1的條件下,找出條件判定△ACP和△BPQ全等,再根據(jù)全等三角形的性質(zhì)和直角三角形的兩個銳角互余的性質(zhì),可證∠CPQ=90°,即可判斷線段PC和線段PQ的位置關(guān)系;(2)本題主要在動點的條件下,分情況討論,利用三角形全等時對應(yīng)邊相等的性質(zhì)進行解答即可.【詳解】(1)當t=1時,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90*.∴∠CPQ=90°,即線段PC與線段PQ垂直;(2)①若△ACP≌△BPQ,則AC=BP,AP=BQ,解得;②若△ACP≌△BQP,則AC=BQ,AP=BP,解得:綜上所述,存在或使得△ACP與△BPQ全等.【點睛】本題主要考查三角形全等與動點問題,熟練掌握三角形全等的性質(zhì)與判定定理,是解決本題的關(guān)鍵.11.在等腰中,,為邊上的高,點在的外部且,,連接交直線于點,連接.(1)如圖①,當時,求證:;(2)如圖②,當時,求的度數(shù);(3)如圖③,當時,求證:.解析:(1)見解析;(2);(3)見解析【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質(zhì),可得AE垂直平分BC,F(xiàn)為垂直平分線AE上點,即可得出結(jié)論;(2)根據(jù)(1)的結(jié)論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出,根據(jù)外角性質(zhì)可得計算即可;(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進而證得△AFM為等邊三角形即可.【詳解】(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,,∠AEB=∠AEC=90°,BE=CE,∴AE垂直平分BE,F(xiàn)在AE上,;(2),,,,由(1)知,AE平分∠BAC,,,故答案為:60°;(3)在CF上截取CM=DF,連接AM,由(1)可知,∠ABC=∠ACB,∠FBC=∠FCB,,,,,在△ACM和△ADF中,∴△ACM≌△ADF(SAS),,,∴△AFM為等邊三角形,,.【點睛】本題考查了等腰三角形的性質(zhì),垂直平分線的性質(zhì),三角形全等的判定和性質(zhì),等邊三角形的判定和性質(zhì),掌握三角形全等的判定和性質(zhì)是解題的關(guān)鍵.12.如圖,若要判定紙帶兩條邊線a,b是否互相平行,我們可以采用將紙條沿AB折疊的方式來進行探究.(1)如圖1,展開后,測得,則可判定a//b,請寫出判定的依據(jù)_________;(2)如圖2,若要使a//b,則與應(yīng)該滿足的關(guān)系是_________;(3)如圖3,紙帶兩條邊線a,b互相平行,折疊后的邊線b與a交于點C,若將紙帶沿(,分別在邊線a,b上)再次折疊,折疊后的邊線b與a交于點,AB//,,求出的長.解析:(1)內(nèi)錯角相等,兩直線平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根據(jù)平行線的判定定理,即可得到答案;(2)由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,結(jié)合三角形內(nèi)角和定理,即可得到答案;(3)分兩種情況:①當B1在B的左側(cè)時,如圖2,當B1在B的右側(cè)時,如圖3,分別求出的長,即可得到答案.【詳解】(1)∵,∴a∥b(內(nèi)錯角相等,兩直線平行),故答案是:內(nèi)錯角相等,兩直線平行;(2)如圖1,由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a∥b,則與應(yīng)該滿足的關(guān)系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①當B1在B的左側(cè)時,如圖2,∵AB//,a∥b,∴AA1=BB1=3,∴=AC-AA1=7-3=4;②當B1在B的右側(cè)時,如圖3,∵AB//,a∥b,∴AA1=BB1=3,∴=AC+AA1=7+3=10.綜上所述:=4或10.【點睛】本題主要考查平行線的判定和性質(zhì)定理,折疊的性質(zhì)以及三角形的內(nèi)角和定理,掌握“平行線間的平行線段長度相等”是解題的關(guān)鍵.13.在中,,是直線上一點,在直線上,且.(1)如圖1,當D在上,在延長線上時,求證:;(2)如圖2,當為等邊三角形時,是的延長線上一點,在上時,作,求證:;(3)在(2)的條件下,的平分線交于點,連,過點作于點,當,時,求的長度.解析:(1)見解析;(2)見解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)即可得到結(jié)論;(2)過E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形和直角三角形的性質(zhì),三角形的外角的性質(zhì),等邊三角形的判定和性質(zhì),證明三角形全等是解決問題的關(guān)鍵.14.在《經(jīng)典幾何圖形的研究與變式》一課中,龐老師出示了一個問題:“如圖1,等腰直角三角形的三個頂點分別落在三條等距的平行線,,上,,且每兩條平行線之間的距離為1,求AB的長度”.在研究這道題的解法和變式的過程中,同學(xué)們提出了很多想法:(1)小明說:我只需要過B、C向作垂線,就能利用全等三角形的知識求出AB的長.(2)小林說:“我們可以改變的形狀.如圖2,,,且每兩條平行線之間的距離為1,求AB的長.”(3)小謝說:“我們除了改變的形狀,還能改變平行線之間的距離.如圖3,等邊三角形ABC三個頂點分別落在三條平行線,,上,且與之間的距離為1,與之間的距離為2,求AB的長、”請你根據(jù)3位同學(xué)的提示,分別求出三種情況下AB的長度.解析:(1);(2);(3)【解析】【分析】(1)分別過點B,C向l1作垂線,交l1于M,N兩點,證明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分別過點B,C向l1作垂線,交l1于點P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,證明△AMB≌△CAN,得到CN=AM,再通過△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的長;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交l3于點P,過A作l3的垂線,交l3于點Q,證明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,從而得到PC,結(jié)合BP算出BC的長,即為AB.【詳解】解:(1)如圖,分別過點B,C向l1作垂線,交l1于M,N兩點,由題意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分別過點B,C向l1作垂線,交l1于P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,設(shè)PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如圖,在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交于點P,過A作l3的垂線,交于點Q,∵△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【點睛】本題考查了全等三角形的判定和性質(zhì),平行線之間的距離,等腰三角形的性質(zhì),等邊三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是利用平行線構(gòu)造全等三角形,再利用全等三角形的性質(zhì)以及勾股定理求解.15.某校八年級數(shù)學(xué)興趣小組對“三角形內(nèi)角或外角平分線的夾角與第三個內(nèi)角的數(shù)量關(guān)系”進行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數(shù)量關(guān)系,并證明.解析:(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線的定義;(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.二、選擇題16.近年來,國家重視精準扶貧,收效顯著.據(jù)統(tǒng)計約有65000000人脫貧,把65000000用科學(xué)記數(shù)法表示,正確的是()A.0.65×108 B.6.5×107 C.6.5×108 D.65×106解析:B【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).詳解:65000000=6.5×107.故選B.點睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.17.如圖,已知線段AB的長度為a,CD的長度為b,則圖中所有線段的長度和為()A.3a+b B.3a-b C.a(chǎn)+3b D.2a+2b解析:A【解析】【分析】依據(jù)線段AB長度為a,可得AB=AC+CD+DB=a,依據(jù)CD長度為b,可得AD+CB=a+b,進而得出所有線段的長度和.【詳解】∵線段AB長度為a,∴AB=AC+CD+DB=a,又∵CD長度為b,∴AD+CB=a+b,∴圖中所有線段的長度和為:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故選A.【點睛】本題考查了比較線段的長度和有關(guān)計算,主要考查學(xué)生能否求出線段的長度和知道如何數(shù)圖形中的線段.18.如圖,直線AB直線CD,垂足為O,直線EF經(jīng)過點O,若,則()A.35° B.45° C.55° D.125°解析:C【解析】【分析】根據(jù)對頂角相等可得:,進而可得的度數(shù).【詳解】解:根據(jù)題意可得:,.故答案為:C.【點睛】本題考查的是對頂角和互余的知識,解題關(guān)鍵在于等量代換.19.將連續(xù)的奇數(shù)1、3、5、7、…、,按一定規(guī)律排成如表:圖中的T字框框住了四個數(shù)字,若將T字框上下左右移動,按同樣的方式可框住另外的四個數(shù),若將T字框上下左右移動,則框住的四個數(shù)的和不可能得到的數(shù)是()A.22 B.70 C.182 D.206解析:D【解析】【分析】根據(jù)題意設(shè)T字框第一行中間數(shù)為,則其余三數(shù)分別為,,,根據(jù)其相鄰數(shù)字之間都是奇數(shù),進而得出的個位數(shù)只能是3或5或7,然后把T字框中的數(shù)字相加把x代入即可得出答案.【詳解】設(shè)T字框第一行中間數(shù)為,則其余三數(shù)分別為,,,,這三個數(shù)在同一行的個位數(shù)只能是3或5或7T字框中四個數(shù)字之和為A.令解得,符合要求;B.令解得,符合要求;C.令解得,符合要求;D.令解得,因為,,不在同一行,所以不符合要求.故選D.【點睛】本題考查的是列代數(shù)式,規(guī)律型:數(shù)字的變化類,一元一次方程的應(yīng)用,解題關(guān)鍵是把題意理解透徹以及找出其規(guī)律即可.20.﹣3的相反數(shù)是()A. B. C. D.解析:D【解析】【分析】相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,0的相反數(shù)還是0.【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【點睛】本題考查相反數(shù),題目簡單,熟記定義是關(guān)鍵.21.如圖,一副三角尺按不同的位置擺放,擺放位置中∠α與∠β不相等的圖形是()A. B. C. D.解析:C【解析】【分析】根據(jù)余角與補角的性質(zhì)進行一一判斷可得答案..【詳解】解:A,根據(jù)角的和差關(guān)系可得∠α=∠β=45;B,根據(jù)同角的余角相等可得∠α=∠β;C,由圖可得∠α不一定與∠β相等;D,根據(jù)等角的補角相等可得∠α=∠β.故選C.【點睛】本題主要考查角度的計算及余角、補角的性質(zhì),其中等角的余角相等,等角的補角相等.22.晚上七點剛過,小強開始做數(shù)學(xué)作業(yè),一看鐘,發(fā)現(xiàn)此時時針和分針在同一直線上;做完數(shù)學(xué)作業(yè)八點不到,此時時針和分針又在同一直線上,則小強做數(shù)學(xué)作業(yè)花了多少時間()A.30分鐘 B.35分鐘 C.分鐘 D.分鐘解析:D【解析】【分析】由題意知,開始寫作業(yè)時,分針和時針組成一平角,寫完作業(yè)時,分針和時針重合.設(shè)小強做數(shù)學(xué)作業(yè)花了x分鐘,根據(jù)分針追上時針時多轉(zhuǎn)了180°列方程求解即可.【詳解】分針速度:30度÷5分=6度/分;時針速度:30度÷60分=0.5度/分.設(shè)小強做數(shù)學(xué)作業(yè)花了x分鐘,由題意得6x-0.5x=180,解之得x=.故選D.【點睛】本題考查了一元一次方程的應(yīng)用---追擊問題,解答本題的關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.23.下列四個式子:,,,,化簡后結(jié)果為的是()A. B. C. D.解析:B【解析】【分析】由題意直接利用求平方根和立方根以及絕對值的性質(zhì)和去括號分別化簡得出答案.【詳解】解:A.=3,故排除A;B.=,選項B正確;C.=3,故排除C;D.=3,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論