版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o2、如圖所示,MN為⊙O的弦,∠N=52°,則∠MON的度數(shù)為(
)A.38° B.52° C.76° D.104°3、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長是()A.6 B.3 C.2 D.4、已知:如圖,PA,PB分別與⊙O相切于A,B點(diǎn),C為⊙O上一點(diǎn),∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°5、如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°6、一個(gè)商標(biāo)圖案如圖中陰影部分,在長方形中,,,以點(diǎn)為圓心,為半徑作圓與的延長線相交于點(diǎn),則商標(biāo)圖案的面積是(
)A. B.C. D.7、一個(gè)點(diǎn)到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(
)A.16cm或6cm B.3cm或8cm C.3cm D.8cm8、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°9、已知⊙O中最長的弦為8cm,則⊙O的半徑為()cm.A.2 B.4 C.8 D.1610、如圖,正方形的邊長為4,以點(diǎn)為圓心,為半徑畫圓弧得到扇形(陰影部分,點(diǎn)在對角線上).若扇形正好是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(
)A. B.1 C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,是的內(nèi)接正三角形,點(diǎn)是圓心,點(diǎn),分別在邊,上,若,則的度數(shù)是____度.2、如圖,是的直徑,弦于點(diǎn)E,,,則的半徑_______.3、如圖,在的方格紙中,每個(gè)小方格都是邊長為1的正方形,其中A、B、C為格點(diǎn),作的外接圓,則的長等于_____.4、如圖,在中,點(diǎn)是的中點(diǎn),連接交弦于點(diǎn),若,,則的長是______.5、數(shù)學(xué)課上,老師讓學(xué)生用尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認(rèn)為小明這種作法中判斷∠ACB是直角的依據(jù)是_____.6、如圖,圓錐的母線長為10cm,高為8cm,則該圓錐的側(cè)面展開圖(扇形)的弧長為_____cm.(結(jié)果用π表示)7、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長為______.8、如圖所示,AB、AC為⊙O的兩條弦,延長CA到點(diǎn)D,AD=AB,若∠ADB=35°,則∠BOC=________.9、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.10、圓錐形冰淇淋的母線長是12cm,側(cè)面積是60πcm2,則底面圓的半徑長等于_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以2cm/s的速度運(yùn)動.P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一個(gè)動點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t(s).(1)當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時(shí),PQ與⊙O相切?2、如圖,已知直線交于A、B兩點(diǎn),是的直徑,點(diǎn)C為上一點(diǎn),且平分,過C作,垂足為D.(1)求證:是的切線;(2)若,的直徑為20,求的長度.3、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.4、已知,正方形ABCD中,M、N分別為AD邊上的兩點(diǎn),連接BM、CN并延長交于一點(diǎn)H,連接AH,E為BM上一點(diǎn),連接AE、CE,∠ECH+∠MNH=90°.(1)如圖1,若E為BM的中點(diǎn),且DM=3AM,,求線段AB的長.(2)如圖2,若點(diǎn)F為BE中點(diǎn),點(diǎn)G為CF延長線上一點(diǎn),且EG//BC,CE=GE,求證:.(3)如圖3,在(1)的條件下,點(diǎn)P為線段AD上一動點(diǎn),連接BP,作CQ⊥BP于Q,將△BCQ沿BC翻折得到△BCl,點(diǎn)K、R分別為線段BC、Bl上兩點(diǎn),且BI=3RI,BC=4BK,連接CR、IK交于點(diǎn)T,連接BT,直接寫出△BCT面積的最大值.5、如圖1,正五邊形內(nèi)接于⊙,閱讀以下作圖過程,并回答下列問題,作法:如圖2,①作直徑;②以F為圓心,為半徑作圓弧,與⊙交于點(diǎn)M,N;③連接.(1)求的度數(shù).(2)是正三角形嗎?請說明理由.(3)從點(diǎn)A開始,以長為半徑,在⊙上依次截取點(diǎn),再依次連接這些分點(diǎn),得到正n邊形,求n的值.-參考答案-一、單選題1、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點(diǎn)是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)半徑相等得到OM=ON,則∠M=∠N=52°,然后根據(jù)三角形內(nèi)角和定理計(jì)算∠MON的度數(shù).【詳解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故選C.【考點(diǎn)】本題考查了圓的認(rèn)識:掌握與圓有關(guān)的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).3、C【解析】【分析】如圖,過作于過作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識是解題的關(guān)鍵.4、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點(diǎn)A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點(diǎn)】本題考查了切線的性質(zhì)、圓周角定理、以及四邊形的內(nèi)角和為360度.5、C【解析】【分析】由點(diǎn)I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對角可得答案.【詳解】解:∵點(diǎn)I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選:C.【考點(diǎn)】本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).6、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點(diǎn)】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.7、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點(diǎn)P在圓外時(shí),點(diǎn)到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點(diǎn)P在圓內(nèi)時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點(diǎn)P在圓外時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.8、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計(jì)算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計(jì)算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.9、B【解析】【分析】⊙O最長的弦就是直徑從而不難求得半徑的長.【詳解】解:∵⊙O中最長的弦為8cm,即直徑為8cm,∴⊙O的半徑為4cm.故選:B.【考點(diǎn)】本題考查弦,直徑等知識,記住圓中的最長的弦就是直徑是解題的關(guān)鍵.10、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計(jì)算弧DE的長,再結(jié)合圓的周長公式進(jìn)行計(jì)算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點(diǎn)】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質(zhì)以及圓錐的相關(guān)知識點(diǎn),熟練掌握弧長公式及圓的周長公式是解決本題的關(guān)鍵.二、填空題1、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因?yàn)榈冗吶切蜛BC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因?yàn)镺A=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點(diǎn)】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進(jìn)行轉(zhuǎn)化,構(gòu)造輔助線是本題難點(diǎn),全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.2、【解析】【分析】設(shè)半徑為r,則,得到,由垂徑定理得到,再根據(jù)勾股定理,即可求出答案.【詳解】解:由題意,設(shè)半徑為r,則,∵,∴,∵是的直徑,弦于點(diǎn)E,∴點(diǎn)E是CD的中點(diǎn),∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案為:.【考點(diǎn)】本題考查了垂徑定理,勾股定理,解題的關(guān)鍵是熟練掌握垂徑定理和勾股定理進(jìn)行解題.3、【解析】【分析】由AB、BC、AC長可推導(dǎo)出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計(jì)算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個(gè)小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點(diǎn)】本題考查了弧長的計(jì)算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.4、8.【解析】【分析】連結(jié)OA,OB,點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點(diǎn)】本題考查垂徑定理的推論,勾股定理,線段中點(diǎn)定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點(diǎn)定義是解題關(guān)鍵.5、直徑所對的圓周角是直角【解析】【分析】根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:根據(jù)“直徑所對的圓周角是直角”得出.故答案為直徑所對的圓周角是直角.【考點(diǎn)】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.6、【解析】【分析】先求出圓錐的底面半徑,然后根據(jù)圓錐的展開圖為扇形,結(jié)合圓周長公式進(jìn)行求解即可.【詳解】設(shè)底面圓的半徑為rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案為12π.【考點(diǎn)】本題考查了圓錐的計(jì)算,解答本題的關(guān)鍵是掌握圓錐側(cè)面展開圖是個(gè)扇形,要熟練掌握扇形與圓錐之間的聯(lián)系.7、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點(diǎn)】本題考查的是垂徑定理、勾股定理等知識,熟練掌握垂徑定理,由勾股定理求出CE的長是解題的關(guān)鍵.8、140°【解析】【分析】在等腰中,根據(jù)三角形的外角性質(zhì)可求出外角的度數(shù);而是同弧所對的圓周角和圓心角,可根據(jù)圓周角和圓心角的關(guān)系求出的度數(shù).【詳解】△ABD中,AB=AD,則:
∴∴故答案為【考點(diǎn)】考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.9、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點(diǎn)進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設(shè)這兩條直線不平行,則兩條直線有交點(diǎn),因?yàn)檫^直線外一點(diǎn)有且只有一條直線與已知直線平行因此,兩條直線有交點(diǎn)時(shí),它們不可能同時(shí)與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點(diǎn)】本題主要考查了反證法,在解題時(shí)要根據(jù)反證法的特點(diǎn)進(jìn)行證明是本題的關(guān)鍵.10、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側(cè)面積公式計(jì)算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點(diǎn)】圓錐的側(cè)面積公式是本題的考點(diǎn),牢記其公式是解題的關(guān)鍵.三、解答題1、(1)當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時(shí),PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運(yùn)動的時(shí)間為秒.∵t=9>8,∴t=9(舍去),∴當(dāng)t=2秒時(shí),PQ與⊙O相切.【考點(diǎn)】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長定理.2、(1)證明見解析(2)【解析】【分析】(1)連接OC,根據(jù)題意可證得∠CAD+∠DCA=90°,再根據(jù)角平分線的性質(zhì),得∠DCO=90°,則CD為O的切線;(2)過O作OF⊥AB,則∠OCD=∠CDA=∠OFD=90°,得四邊形DCOF為矩形,設(shè)AD=x,在Rt△AOF中,由勾股定理得,從而求得x的值,由勾股定理求出AF的長,再求AB的長.(1)證明:連接,∵,∴,∵平分,∴,∴,∴,∵,∴,又∵為半徑∴是的切線.(2)解:過O作,垂足為F,∵,∴四邊形為矩形,∴,設(shè),∵,則,∵的直徑為20,∴,∴,在中,由勾股定理得,即,解得:(不合題意,舍去),∴,∴,∴,∵,由垂徑定理知,F(xiàn)為的中點(diǎn),∴.【考點(diǎn)】本題考查了切線的證明,矩形的判定和性質(zhì)以及勾股定理,掌握切線的定義和證明方法是解題的關(guān)鍵.3、詳見解析.【解析】【詳解】試題分析:根據(jù)弧相等,則對應(yīng)的弦相等從而證明AB=AC,則△ABC易證是等邊三角形,然后根據(jù)同圓中弦相等,則對應(yīng)的圓心角相等即可證得.試題解析:證明:∵,∴AB=AC,△ABC為等腰三角形(相等的弧所對的弦相等)∵∠ACB=60°∴△ABC為等邊三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所對的圓心角相等)4、(1)4(2)證明見解析(3)【解析】【分析】(1)由正方形ABCD的性質(zhì),可得到△ABM為直角三角形,再由E為BM中點(diǎn),得到BM=2AE,最后由勾股定理求得AB的長度;(2)過點(diǎn)A作AY⊥BH于點(diǎn)Y,由EG∥BC,CE=GE,F(xiàn)為BE中點(diǎn),可得△GEF≌△CBF,從而得到△BCE為等腰三角形,再根據(jù)角的關(guān)系,易得∠ECG+∠ECH=∠BCD=45°,得到△HFC為等腰直角三角形,再根據(jù)△ABY≌△BCF,得到BM=CF,AY=BF,從而轉(zhuǎn)化得到結(jié)論;(3)當(dāng)P、D重合時(shí)得到最大面積,以B為原點(diǎn)建立直角坐標(biāo)系,求出坐標(biāo)和表達(dá)式,聯(lián)立方程組求解,即可得出答案.(1)解:∵四邊形ABCD為正方形,且DM=3AM,∴∠BAM=90°,AD=AB=4AM,∴△ABM為直角三角形,∵E為BM的中點(diǎn),,∴BM=2AE=,在Rt△ABM中,設(shè)AM=x,則AB=4x,∴,解得,∴AB=4;(2)過點(diǎn)A作AY⊥BH于點(diǎn)Y,∵EG//BC,CE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超重型汽車列車掛車工安全生產(chǎn)規(guī)范評優(yōu)考核試卷含答案
- 液晶顯示器件彩膜制造工操作管理考核試卷含答案
- 選礦脫水工創(chuàng)新意識評優(yōu)考核試卷含答案
- 電梯機(jī)械裝配工崗前工作能力考核試卷含答案
- 顏料化操作工風(fēng)險(xiǎn)評估強(qiáng)化考核試卷含答案
- 醫(yī)用供氣工操作安全水平考核試卷含答案
- 吸油煙機(jī)制作工操作強(qiáng)化考核試卷含答案
- 2024年河池學(xué)院輔導(dǎo)員考試筆試題庫附答案
- 2024年白銀市特崗教師筆試真題匯編附答案
- 2025寧夏回族自治區(qū)公務(wù)員考試《行測》題庫及參考答案
- 2026年中考?xì)v史一輪復(fù)習(xí):七八九年級必背考點(diǎn)知識提綱填空版
- 天然氣供氣工程安全交底
- 《工業(yè)機(jī)器人系統(tǒng)操作員三級(高級)理論知識考核要素細(xì)目表》
- 航天器多功能散熱結(jié)構(gòu)設(shè)計(jì)-洞察及研究
- 政治●天津卷丨2024年天津市普通高中學(xué)業(yè)水平選擇性考試政治試卷及答案
- 福州戶外顯示屏管理制度
- 檢察案卡填錄規(guī)范課件
- 2025江漢藝術(shù)職業(yè)學(xué)院輔導(dǎo)員考試題庫
- 醫(yī)院內(nèi)控制度
- 非煤地下礦山機(jī)電知識
- 《高危作業(yè)培訓(xùn)》課件
評論
0/150
提交評論