2026屆山東省淄博市臨淄區(qū)召口鄉(xiāng)中學數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
2026屆山東省淄博市臨淄區(qū)召口鄉(xiāng)中學數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
2026屆山東省淄博市臨淄區(qū)召口鄉(xiāng)中學數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
2026屆山東省淄博市臨淄區(qū)召口鄉(xiāng)中學數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
2026屆山東省淄博市臨淄區(qū)召口鄉(xiāng)中學數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆山東省淄博市臨淄區(qū)召口鄉(xiāng)中學數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,D、E分別是△ABC的邊AB、BC上的點,DE∥AC.若S△BDE:S△ADE=1:2.則S△DOE:S△AOC的值為()A. B. C. D.2.二次函數(shù)圖像的頂點坐標為()A.(0,-2) B.(-2,0) C.(0,2) D.(2,0)3.如圖,下列四個三角形中,與相似的是()A. B. C. D.4.在同一時刻,身高1.6m的小強在陽光下的影長為0.8m,一棵大樹的影長為4.8m,則樹的高度為()A.4.8m B.6.4m C.9.6m D.10m5.在數(shù)學活動課上,張明運用統(tǒng)計方法估計瓶子中的豆子的數(shù)量.他先取出粒豆子,給這些豆子做上記號,然后放回瓶子中,充分搖勻之后再取出粒豆子,發(fā)現(xiàn)其中粒有剛才做的記號,利用得到的數(shù)據(jù)可以估計瓶子中豆子的數(shù)量約為()粒.A. B. C. D.6.如圖,廠房屋頂人字架(等腰三角形)的跨度BC=10m,∠B=36°,D為底邊BC的中點,則上弦AB的長約為()(結(jié)果保留小數(shù)點后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m7.下列光線所形成的投影不是中心投影的是()A.太陽光線 B.臺燈的光線 C.手電筒的光線 D.路燈的光線8.下面的函數(shù)是反比例函數(shù)的是()A. B. C. D.9.如圖所示,在⊙O中,=,∠A=30°,則∠B=()A.150° B.75° C.60° D.15°10.如圖,轉(zhuǎn)盤的紅色扇形圓心角為120°.讓轉(zhuǎn)盤自由轉(zhuǎn)動2次,指針1次落在紅色區(qū)域,1次落在白色區(qū)域的概率是()A. B. C. D.11.小兵身高1.4m,他的影長是2.1m,若此時學校旗桿的影長是12m,那么旗桿的高度()A.4.5m B.6m C.7.2m D.8m12.在比例尺為1:1000000的地圖上量得A,B兩地的距離是20cm,那么A、B兩地的實際距離是()A.2000000cm B.2000m C.200km D.2000km二、填空題(每題4分,共24分)13.圓錐的母線長為,底面半徑為,那么它的側(cè)面展開圖的圓心角是______度.14.一個圓錐的底面圓的半徑為3,母線長為9,則該圓錐的側(cè)面積為__________.15.若關(guān)于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一個根為0,則m的值為_____.16.拋物線的頂點坐標是______.17.小明擲一枚硬幣10次,有9次正面向上,當他擲第10次時,正面向上的概率是_____.18.如圖,在平面直角坐標系中,正方形ABCD的面積為20,頂點A在y軸上,頂點C在x軸上,頂點D在雙曲線的圖象上,邊CD交y軸于點E,若,則k的值為______.三、解答題(共78分)19.(8分)如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行60米到達C處,再測得山頂A的仰角為45°,求山高AD的長度.(測角儀高度忽略不計)20.(8分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?21.(8分)某公司計劃購買若干臺電腦,現(xiàn)從兩家商場了解到同一種型號的電腦報價均為元,并且多買都有一定的優(yōu)惠.各商場的優(yōu)惠條件如下:甲商場優(yōu)惠條件:第一臺按原價收費,其余的每臺優(yōu)惠;乙商場優(yōu)惠條件:每臺優(yōu)惠.設(shè)公司購買臺電腦,選擇甲商場時,所需費用為元,選擇乙商場時,所需費用為元,請分別求出與之間的關(guān)系式.什么情況下,兩家商場的收費相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?現(xiàn)在因為急需,計劃從甲乙兩商場一共買入臺某品牌的電腦,其中從甲商場購買臺電腦.已知甲商場的運費為每臺元,乙商場的運費為每臺元,設(shè)總運費為元,在甲商場的電腦庫存只有臺的情況下,怎樣購買,總運費最少?最少運費是多少?22.(10分)計算:﹣12119+|﹣2|+2cos31°+(2﹣tan61°)1.23.(10分)在△ABC中,AB=AC,∠BAC=120°,以CA為邊在∠ACB的另一側(cè)作∠ACM=∠ACB,點D為射線BC上任意一點,在射線CM上截取CE=BD,連接AD、DE、AE.(1)如圖1,當點D落在線段BC的延長線上時,求∠ADE的度數(shù);(2)如圖2,當點D落在線段BC(不含邊界)上時,AC與DE交于點F,試問∠ADE的度數(shù)是否發(fā)生變化?如果不變化,請給出理由;如果變化了,請求出∠ADE的度數(shù);(3)在(2)的條件下,若AB=6,求CF的最大值.24.(10分)有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.(1)求被剪掉陰影部分的面積:(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?25.(12分)將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這3個盒子裝入一只不透明的袋子中.(1)攪勻后從中摸出1個盒子,求摸出的盒子中是型矩形紙片的概率;(2)攪勻后先從中摸出1個盒子(不放回),再從余下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).26.如圖所示,小吳和小黃在玩轉(zhuǎn)盤游戲,準備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤甲、乙,每個轉(zhuǎn)盤被分成面積相等的幾個扇形區(qū)域,并在每個扇形區(qū)域內(nèi)標上數(shù)字,游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止轉(zhuǎn)動后,指針所指扇形區(qū)域內(nèi)的數(shù)字之和為4,5或6時,則小吳勝;否則小黃勝.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域為止)(1)這個游戲規(guī)則對雙方公平嗎?說說你的理由;(2)請你設(shè)計一個對雙方都公平的游戲規(guī)則.

參考答案一、選擇題(每題4分,共48分)1、B【分析】依次證明和,利用相似三角形的性質(zhì)解題.【詳解】∵,

∴,

∴,

∵∥,∴,∴,

∵∥,∴,∴,

故選:B.本題主要考查了相似三角形的判定及其性質(zhì)的應(yīng)用問題;解題的關(guān)鍵是靈活運用形似三角形的判定及其性質(zhì)來分析、判斷、推理或解答.2、A【分析】根據(jù)頂點式的坐標特點,直接寫出頂點坐標即對稱軸.【詳解】解:拋物線y=x2-2是頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(0,-2),故選A.此題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=a(x-h)2+k的頂點坐標為,對稱軸為x=h.3、C【分析】△ABC是等腰三角形,底角是75°,則頂角是30°,結(jié)合各選項是否符合相似的條件即可.【詳解】由題圖可知,,所以∠B=∠C=75°,所以.根據(jù)兩邊成比例且夾角相等的兩個三角形相似知,與相似的是項中的三角形故選:C.此題主要考查等腰三角形的性質(zhì),三角形內(nèi)角和定理和相似三角形的判定的理解和掌握,此題難度不大,但綜合性較強.4、C【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】設(shè)樹高為x米,所以x=4.8×2=9.6.這棵樹的高度為9.6米故選C.考查相似三角形的應(yīng)用,掌握同一時刻物高和影長成正比是解題的關(guān)鍵.5、B【解析】設(shè)瓶子中有豆子x粒,根據(jù)取出100粒剛好有記號的8粒列出算式,再進行計算即可.【詳解】設(shè)瓶子中有豆子粒豆子,根據(jù)題意得:,解得:,經(jīng)檢驗:是原分式方程的解,答:估計瓶子中豆子的數(shù)量約為粒.故選:.本題考查了用樣本的數(shù)據(jù)特征來估計總體的數(shù)據(jù)特征,利用樣本中的數(shù)據(jù)對整體進行估算是統(tǒng)計學中最常用的估算方法.6、B【分析】先根據(jù)等腰三角形的性質(zhì)得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入計算可得.【詳解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故選:B.本題考查解直接三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)等腰三角形的性質(zhì)構(gòu)造出直角三角形Rt△ABD,再利用三角函數(shù)求解.7、A【分析】利用中心投影(光由一點向外散射形成的投影叫做中心投影)和平行投影(由平行光線形成的投影是平行投影)的定義即可判斷出.【詳解】解:A.太陽距離地球很遠,我們認為是平行光線,因此不是中心投影.

B.臺燈的光線是由臺燈光源發(fā)出的光線,是中心投影;

C.手電筒的光線是由手電筒光源發(fā)出的光線,是中心投影;

D.路燈的光線是由路燈光源發(fā)出的光線,是中心投影.

所以,只有A不是中心投影.

故選:A.本題考查了中心投影和平行投影的定義.熟記定義,并理解一般情況下,太陽光線可以近似的看成平行光線是解決此題的關(guān)鍵.8、A【解析】一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=或y=kx-1(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù),據(jù)此進行求解即可.【詳解】解:A、是反比例函數(shù),正確;

B、是二次函數(shù),錯誤;

C、是正比例函數(shù),錯誤;

D、是一次函數(shù),錯誤.

故選:A.本題考查了反比例函數(shù)的識別,容易出現(xiàn)的錯誤是把當成反比例函數(shù),要注意對反比例函數(shù)形式的認識.9、B【詳解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形內(nèi)角和定理).故選B.考點:圓心角、弧、弦的關(guān)系.10、C【分析】畫出樹狀圖,由概率公式即可得出答案.【詳解】解:由圖得:紅色扇形圓心角為120,白色扇形的圓心角為240°,∴紅色扇形的面積:白色扇形的面積=,畫出樹狀圖如圖,共有9個等可能的結(jié)果,讓轉(zhuǎn)盤自由轉(zhuǎn)動2次,指針1次落在紅色區(qū)域,1次落在白色區(qū)域的結(jié)果有4個,∴讓轉(zhuǎn)盤自由轉(zhuǎn)動2次,指針1次落在紅色區(qū)域,1次落在白色區(qū)域的概率為;故選:C.本題考查了樹狀圖和概率計算公式,解決本題的關(guān)鍵是正確理解題意,熟練掌握樹狀圖的畫法步驟.11、D【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】根據(jù)相同時刻的物高與影長成比例,設(shè)旗桿的高度為xm,根據(jù)題意得:,解得:x=8,即旗桿的高度為8m,故選:D.本題主要考查了相似三角形的應(yīng)用,同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.12、C【分析】比例尺=圖上距離:實際距離,根據(jù)比例尺關(guān)系可直接得出A、B兩地的實際距離.【詳解】根據(jù)比例尺=圖上距離:實際距離,得A、B兩地的實際距離為20×1000000=20000000(cm),20000000cm=200km.故A、B兩地的實際距離是200km.故選:C.本題考查了線段的比,能夠根據(jù)比例尺正確進行計算,注意單位的轉(zhuǎn)化.二、填空題(每題4分,共24分)13、1【分析】易得圓錐的底面周長,就是圓錐的側(cè)面展開圖的弧長,利用弧長公式可得圓錐側(cè)面展開圖的角度,把相關(guān)數(shù)值代入即可求解.【詳解】∵圓錐底面半徑是3,∴圓錐的底面周長為6π,設(shè)圓錐的側(cè)面展開的扇形圓心角為n°,,解得n=1.故答案為1.此題考查了圓錐的計算,用到的知識點為:圓錐的側(cè)面展開圖的弧長等于圓錐的底面周長.14、【分析】先求出底面圓的周長,然后根據(jù)扇形的面積公式:即可求出該圓錐的側(cè)面積.【詳解】解:底面圓的周長為,即圓錐的側(cè)面展開后的弧長為,∵母線長為9,∴圓錐的側(cè)面展開后的半徑為9,∴圓錐的側(cè)面積故答案為:此題考查的是求圓錐的側(cè)面積,掌握扇形的面積公式:是解決此題的關(guān)鍵.15、﹣1.【分析】根據(jù)一元二次方程的定義得到m-1≠0;根據(jù)方程的解的定義得到m2-1=0,由此可以求得m的值.【詳解】解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案為﹣1.本題考查一元二次方程的解的定義和一元二次方程的定義.注意:一元二次方程的二次項系數(shù)不為零.16、(1,3)【分析】根據(jù)頂點式:的頂點坐標為(h,k)即可求出頂點坐標.【詳解】解:由頂點式可知:的頂點坐標為:(1,3).故答案為(1,3).此題考查的是求頂點坐標,掌握頂點式:的頂點坐標為(h,k)是解決此題的關(guān)鍵.17、.【分析】根據(jù)概率的性質(zhì)和概率公式即可求出,當他擲第10次時,正面向上的概率.【詳解】解:∵擲一枚質(zhì)地均勻的硬幣,有兩種結(jié)果:正面朝上,反面朝上,每種結(jié)果等可能出現(xiàn),∴她第10次擲這枚硬幣時,正面向上的概率是:.故答案為:.本題考查了概率統(tǒng)計的問題,根據(jù)概率公式求解即可.18、4【分析】過D作DF⊥x軸并延長FD,過A作AG⊥DF于點G,利用正方形的性質(zhì)易證△ADG≌△DCF,得到AG=DF,設(shè)D點橫坐標為m,則OF=AG=DF=m,易得OE為△CDF的中位線,進而得到OF=OC,然后利用勾股定理建立方程求出,進而求出k.【詳解】如圖,過D作DF⊥x軸并延長FD,過A作AG⊥DF于點G,∵四邊形ABCD為正方形,∴CD=AD,∠ADC=90°∴∠ADG+∠CDF=90°又∵∠DCF+∠CDF=90°∴∠ADG=∠DCF在△ADG和△DCF中,∵∠AGD=∠DFC=90°,∠ADG=∠DCF,AD=CD∴△ADG≌△DCF(AAS)∴AG=DF設(shè)D點橫坐標為m,則OF=AG=DF=m,∴D點坐標為(m,m)∵OE∥DF,CE=ED∴OE為△CDF的中位線,∴OF=OC∴CF=2m在Rt△CDF中,∴解得又∵D點坐標為(m,m)∴故答案為:4.本題考查反比例函數(shù)與幾何的綜合問題,需要熟練掌握正方形的性質(zhì),全等三角形的判定和性質(zhì),中位線的判定和性質(zhì)以及勾股定理,解題的關(guān)鍵是作出輔助線,利用全等三角形推出點D的橫縱坐標相等.三、解答題(共78分)19、30米【解析】設(shè)AD=xm,在Rt△ACD中,根據(jù)正切的概念用x表示出CD,在Rt△ABD中,根據(jù)正切的概念列出方程求出x的值即可.【詳解】由題意得,∠ABD=30°,∠ACD=45°,BC=60m,設(shè)AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴,∴米,答:山高AD為30米.本題考查的是解直角三角形的應(yīng)用﹣仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.20、(1)不會穿過森林保護區(qū).理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區(qū),也就是求C到MN的距離.要構(gòu)造直角三角形,再解直角三角形;(2)根據(jù)題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設(shè)CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區(qū).(2)設(shè)原計劃完成這項工程需要y天,則實際完成工程需要y-5根據(jù)題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.21、(1),;(2)當購買臺時,兩家商場的收費相同;當購買電腦臺數(shù)大于時,甲商場購買更優(yōu)惠;當購買電腦臺數(shù)小于時,乙商場購買更優(yōu)惠;(3)從甲商場買臺,從乙商場買臺時,總運費最少,最少運費是元.【分析】(1)根據(jù)“費用=每臺費用臺數(shù)”分別建立等式即可;(2)分別根據(jù)求解即可;(3)先列出運費與a的關(guān)系式,再根據(jù)函數(shù)的性質(zhì)求出最值即可.【詳解】(1)由題意得:;(或);(或)(2)設(shè)學校購買臺電腦,若兩家商場收費相同,則:,(或)解得即當購買臺時,兩家商場的收費相同;若到甲商場購買更優(yōu)惠,則:解得即當購買電腦臺數(shù)大于時,甲商場購買更優(yōu)惠;若到乙商場購買更優(yōu)惠,則:解得即當購買電腦臺數(shù)小于時,乙商場購買更優(yōu)惠;(3)由題意得,當取最大時,費用最小甲商場只有臺取4,此時故從甲商場買臺,從乙商場買臺時,總運費最少,最少運費是元.本題考查了一次函數(shù)的性質(zhì)與應(yīng)用,依據(jù)題意正確建立函數(shù)關(guān)系式是解題關(guān)鍵.22、2【解析】直接利用零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值和絕對值的性質(zhì)分別化簡得出答案.【詳解】解:原式=﹣1+2﹣+1=2此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.23、(1)∠ADE=30°;(2)∠ADE=30°,理由見解析;(3)【分析】(1)利用SAS定理證明△ABD≌△ACE,根據(jù)全等三角形的性質(zhì)得到AD=AE,∠CAE=∠BAD,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可證明;(2)同(1)的證明方法相同;(3)證明△ADF∽△ACD,根據(jù)相似三角形的性質(zhì)得到,求出AD的最小值,得到AF的最小值,求出CF的最大值.【詳解】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的結(jié)論成立,證明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°,∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF?AC,∴AD2=6AF,∴AF=,∴當AD最短時,AF最短、CF最長,易得當AD⊥BC時,AF最短、CF最長,此時AD=AB=3,∴AF最短===,∴CF最長=AC-AF最短=6-=.本題屬于三角形綜合題,考查了等腰三角形的性質(zhì),全等三角形的判定和性質(zhì)以及相似三角形的判定與性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形、相似三角形解決問題,屬于中考常考題型.24、(1)平方米;(2)米;【分析】(1)先根據(jù)圓周角定理可得弦BC為直徑,即可得到AB=AC,根據(jù)特殊角的銳角三角函數(shù)值可求得AB的長,最后根據(jù)扇形的面積公式即可求得結(jié)果;(2)設(shè)圓錐底面圓的半徑為r,而弧

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論