綜合解析人教版8年級數(shù)學(xué)上冊《軸對稱》專項攻克試題(含答案解析)_第1頁
綜合解析人教版8年級數(shù)學(xué)上冊《軸對稱》專項攻克試題(含答案解析)_第2頁
綜合解析人教版8年級數(shù)學(xué)上冊《軸對稱》專項攻克試題(含答案解析)_第3頁
綜合解析人教版8年級數(shù)學(xué)上冊《軸對稱》專項攻克試題(含答案解析)_第4頁
綜合解析人教版8年級數(shù)學(xué)上冊《軸對稱》專項攻克試題(含答案解析)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、等腰三角形一腰上的高與另一腰的夾角為,則頂角的度數(shù)為(

)A. B. C.或 D.或2、如圖是一個正方體,小敏同學(xué)經(jīng)過研究得到如下5個結(jié)論,正確的結(jié)論有(

)個①用剪刀沿著它的棱剪開這個紙盒,至少要剪7刀,才能展開成平面圖形;②用一平面去截這個正方體得到的截面是三角形ABC,則∠ABC=45°;③一只螞蟻在一個實心正方體木塊P點處想沿著表面爬到C點最近的路只有4條;④用一平面去截這個正方體得到的截面可能是八邊形;⑤正方體平面展開圖有11種不同的圖形.A.1 B.2 C.3 D.43、如圖,在中,,,點是邊上任意一點,過點作交于點,則的度數(shù)是(

).A. B. C. D.4、如圖所示,在3×3的正方形網(wǎng)格中,已有三個小正方形被涂黑,將剩余的白色小正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的情況有()A.6種 B.5種 C.4種 D.2種5、等腰三角形的一個內(nèi)角是80°,則它的底角是(

)A.50° B.80° C.50°或80° D.20°或80°6、觀察下列作圖痕跡,所作CD為△ABC的邊AB上的中線是()A. B.C. D.7、如圖,先將正方形紙片對折,折痕為MN,再把B點折疊在折痕MN上,折痕為AE,點B在MN上的對應(yīng)點為H,沿AH和DH剪下,這樣剪得的△ADH中(

)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD8、已知的周長是,,則下列直線一定為的對稱軸的是A.的邊的中垂線 B.的平分線所在的直線C.的邊上的中線所在的直線 D.的邊上的高所在的直線9、對于問題:如圖1,已知∠AOB,只用直尺和圓規(guī)判斷∠AOB是否為直角?小意同學(xué)的方法如圖2:在OA、OB上分別取C、D,以點C為圓心,CD長為半徑畫弧,交OB的反向延長線于點E,若測量得OE=OD,則∠AOB=90o.則小意同學(xué)判斷的依據(jù)是(

)A.等角對等邊 B.線段中垂線上的點到線段兩段距離相等C.垂線段最短 D.等腰三角形“三線合一”10、如圖,等邊三角形ABC中,AD⊥BC,垂足為D,點E在線段AD上,∠EBC=45°,則∠ACE等于()A.15° B.30° C.45° D.60°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,已知AD是△ABC的中線,E是AC上的一點,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,則∠ACB=_____.2、如圖,依據(jù)尺規(guī)作圖的痕跡,計算∠α=________°.3、如圖,在中,,點,都在邊上,,若,則的長為_______.4、如圖,中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定是等腰三角形(用序號寫出一種情形):_______.5、內(nèi)部有一點P,,點P關(guān)于的對稱點為M,點P關(guān)于的對稱點為N,若,則的周長為___________.6、如圖,在中,,,以點為圓心,長為半徑作弧,交射線于點,連接,則的度數(shù)是______.7、在平面直角坐標系中,點P(2,1)關(guān)于x軸的對稱點的坐標為_____8、如圖,RtABC中,∠C=90°,D是BC的中點,∠CAD=30°,BC=6,則AD+DB的長為____.9、已知:如圖,在中,點在邊上,,則_______度.10、等腰三角形的頂角與其一個底角的度數(shù)的比值稱為這個等腰三角形的“特征值”﹒若等腰中,,則它的特征值_________________.三、解答題(5小題,每小題6分,共計30分)1、如圖,在中,,的垂直平分線分別交、于點D、E,的垂直平分線分別交、于點F、G.求的周長.2、已知:如圖,是的角平分線,于點,于點,,求證:是的中垂線.3、在中,,在的外部作等邊三角形,E為的中點,連接并延長交于點F,連接.(1)如圖1,若,求和的度數(shù);(2)如圖2,的平分線交于點M,交于點N,連接.①補全圖2;②若,求證:.4、已知:如圖,為銳角,點A在射線上.求作:射線,使得.小靜的作圖思路如下:①以點A為圓心,為半徑作弧,交射線于點B,連接;②作的角平分線.射線即為所求的射線.(1)使用直尺和圓規(guī),按照小靜的作圖思路補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:,(__________).是的一個外角,___________________..平分,..(__________).5、在三角形紙片ABC中,,,,點E在AC上,.將三角形紙片ABC按圖中方式折疊,使點A的對應(yīng)點落在AB的延長線上,折痕為ED,交BC于點F.(1)求的度數(shù);(2)求BF的長度.-參考答案-一、單選題1、D【解析】【分析】分等腰三角形為銳角三角形和鈍角三角形兩種情況,然后分別根據(jù)直角三角形兩銳角互余即可得.【詳解】依題意,分以下兩種情況:(1)如圖1,等腰為銳角三角形,頂角為,(2)如圖2,等腰為鈍角三角形,頂角為,綜上,頂角的度數(shù)為或故選:D.【考點】本題考查了等腰三角形的定義、直角三角形兩銳角互余等知識點,依據(jù)題意,正確分兩種情況討論是解題關(guān)鍵.2、B【解析】【分析】根據(jù)正方體的每個面都是正方形判斷②;根據(jù)一平面去截n棱柱,截面最多是(n+2)邊形判斷④;根據(jù)正方體的展開圖判斷⑤①;根據(jù)正方體有六個面,從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個組合的兩個面展開均是相同的長方形,而P到C的最短路線是這個長方形的對角線,判斷③.【詳解】解:(1)AB、BC、AC均是相同正方形的對角線,故AB=BC=AC,△ABC是等邊三角形,∠ABC=60°,②錯誤;(2)用一平面去截n棱柱,截面最多是(n+2)邊形,正方體是四棱柱,所以截面最多是六邊形,④錯誤;(3)正方體的展開圖只有11種,⑤正確;(4)正方體的11種展開圖,六個小正方形均是一連一關(guān)系,即必須是5條邊相連,正方體有12條棱,所以要剪12-5=7條棱,才能把正方體展開成平面圖形,①正確;(5)正方體有六個面,P點屬于“前、左、下面”這三個面,所以從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個組合的兩個面展開均是相同的長方形,而P到C的最短路線是這個長方形的對角線,這些對角線均相等,故從P到C的最短路線有6條;③錯誤.綜上所述,正確的選項是①⑤,故選B【考點】本題考查了正方體的有關(guān)知識.初中數(shù)學(xué)中的典型題型“多結(jié)論題型”,判別時方法:①容易判別的先判別,無需按順序解答;②注意部分結(jié)論間存在有一定的關(guān)聯(lián)性.3、B【解析】【分析】根據(jù)等腰三角形的性質(zhì)可得∠B=∠C,進而可根據(jù)三角形的內(nèi)角和定理求出∠A的度數(shù),然后根據(jù)平行線的性質(zhì)可得∠DEC=∠A,進一步即可求出結(jié)果.【詳解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故選:B.【考點】本題考查了等腰三角形的性質(zhì)、平行線的性質(zhì)和三角形的內(nèi)角和定理等知識,屬于常考題型,熟練掌握上述基礎(chǔ)知識是解題的關(guān)鍵.4、C【解析】【分析】軸對稱圖形的概念:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,據(jù)此解答即可.【詳解】如圖所示,所標數(shù)字1,2,3,4都符合要求,一共有4種方法.故選C.【考點】本題重點考查了利用軸對稱設(shè)計圖案,需熟練掌握軸對稱圖形的定義,應(yīng)該多加練習(xí).5、C【解析】【分析】先分情況討論:80°是等腰三角形的底角或80°是等腰三角形的頂角,再根據(jù)三角形的內(nèi)角和定理進行計算.【詳解】解:當80°是等腰三角形的頂角時,則頂角就是80°,底角為(180°80°)=50°;當80°是等腰三角形的底角時,則頂角是180°80°×2=20°.∴等腰三角形的底角為50°或80°;故選:C.【考點】本題考查了等腰三角形的性質(zhì)及三角形的內(nèi)角和定理;若題目中沒有明確頂角或底角的度數(shù),做題時要注意分情況進行討論,這是十分重要的,也是解答問題的關(guān)鍵.6、B【解析】【分析】根據(jù)題意,CD為△ABC的邊AB上的中線,就是作AB邊的垂直平分線,交AB于點D,點D即為線段AB的中點,連接CD即可判斷.【詳解】解:作AB邊的垂直平分線,交AB于點D,連接CD,∴點D即為線段AB的中點,∴CD為△ABC的邊AB上的中線.故選:B.【考點】本題主要考查三角形一邊的中線的作法;作該邊的中垂線,找出該邊的中點是解題關(guān)鍵.7、B【解析】【分析】翻折后的圖形與翻折前的圖形是全等圖形,利用折疊的性質(zhì),正方形的性質(zhì),以及圖形的對稱性特點解題.【詳解】解:由圖形的對稱性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故選B.【考點】本題主要考查翻折圖形的性質(zhì),解決本題的關(guān)鍵是利用圖形的對稱性把所求的線段進行轉(zhuǎn)移.8、C【解析】【分析】首先判斷出是等腰三角形,AB是底邊,然后根據(jù)等腰三角形的性質(zhì)和對稱軸的定義判斷即可.【詳解】解:∵,,∴,∴是等腰三角形,AB是底邊,∴一定為的對稱軸的是的邊上的中線所在的直線,故選:C.【考點】本題考查了等腰三角形的判定和性質(zhì)以及對稱軸的定義,判斷出是等腰三角形,AB是底邊是解題的關(guān)鍵.9、B【解析】【分析】由垂直平分線的判定定理,即可得到答案.【詳解】解:根據(jù)題意,∵CD=CE,OE=OD,∴AO是線段DE的垂直平分線,∴∠AOB=90°;則小意同學(xué)判斷的依據(jù)是:線段中垂線上的點到線段兩段距離相等;故選:B.【考點】本題考查了垂直平分線的判定定理,解題的關(guān)鍵是熟練掌握垂直平分線的判定定理進行判斷.10、A【解析】【分析】先判斷出AD是BC的垂直平分線,進而求出∠ECB=45°,即可得出結(jié)論.【詳解】解:∵等邊三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分線,∵點E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故選A.【考點】此題主要考查了等邊三角形的性質(zhì),垂直平分線的判定和性質(zhì),等腰三角形的性質(zhì),求出∠ECB是解本題的關(guān)鍵.二、填空題1、100°##100度【解析】【分析】延長AD到M,使得DM=AD,連接BM,證△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再證△BFM是等腰三角形,求出∠MBF的度數(shù),即可解決問題.【詳解】解:如圖,延長AD到M,使得DM=AD,連接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案為:100°.【考點】本題考查全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考常考題型.2、56【解析】【分析】先根據(jù)矩形的性質(zhì)得出AD∥BC,故可得出∠DAC的度數(shù),由角平分線的定義求出∠EAF的度數(shù),再由EF是線段AC的垂直平分線得出∠AEF的度數(shù),根據(jù)三角形內(nèi)角和定理得出∠AFE的度數(shù),進而可得出結(jié)論.【詳解】如圖,∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分線,∴∠EAF=∠DAC=34°.∵由作法可知,EF是線段AC的垂直平分線,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.故答案為:56.3、9.【解析】【分析】根據(jù)等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì)即可求解.【詳解】因為△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考點】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).4、①③或②③【解析】【分析】已知①③條件,先證△BEO≌△CDO,再證明∠ABC=∠ACB最后得到△ABC是等腰三角形;已知②③條件可證明△BEO≌△CDO,再證明△ABC是等腰三角形.【詳解】解:①③或②③.由①③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD.∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.因此△ABC是等腰三角形.由②③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EOB=∠DOC,∠BEO=∠CDO,BE=CD,∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.∴△ABC是等腰三角形.故答案為:①③或②③.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的判定;其中掌握用“AAS”判定兩個三角形全等和用“等角對等邊”判定三角形為等腰三角形是解決本題的關(guān)鍵.5、15【解析】【分析】根據(jù)軸對稱的性質(zhì)可證∠MON=2∠AOB=60°;再利用OM=ON=OP,即可求出的周長.【詳解】解:根據(jù)題意可畫出下圖,∵OA垂直平分PM,OB垂直平分PN.∴∠MOA=∠AOP,∠NOB=∠BOP;OM=OP=ON=5cm.∴∠MON=2∠AOB=60°.∴為等邊三角形。△MON的周長=3×5=15.故答案為:15.【考點】此題考查了軸對稱的性質(zhì)及相關(guān)圖形的周長計算,根據(jù)軸對稱的性質(zhì)得出∠MON=2∠AOB=60°是解題關(guān)鍵.6、10°或100°【解析】【分析】分兩種情況畫圖,由作圖可知得,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理解答即可.【詳解】解:如圖,點即為所求;在中,,,,由作圖可知:,,;由作圖可知:,,,,.綜上所述:的度數(shù)是或.故答案為:或.【考點】本題考查了作圖復(fù)雜作圖,三角形內(nèi)角和定理,等腰三角形的判定與性質(zhì),解題的關(guān)鍵是掌握基本作圖方法.7、(2,1)【解析】【分析】根據(jù)與x軸對稱的點的性質(zhì),求出對稱點的坐標即可.【詳解】∵對稱點與點P(2,1)關(guān)于x軸對稱∴保持橫坐標不變,縱坐標取相反數(shù)∴對稱點的坐標為故答案為:.【考點】本題考查了關(guān)于x軸的對稱點的坐標問題,掌握與x軸對稱的點的性質(zhì)是解題的關(guān)鍵.8、9【解析】【分析】根據(jù)∠CAD=30°,得到AD=2CD,從而得到AD+BD=3CD,求得CD即可.【詳解】∵∠C=90°,D是BC的中點,∠CAD=30°,BC=6,∴AD=2CD,BD=CD=BC=3,∴AD+BD=3CD=9,故答案為:9.【考點】本題考查了直角三角形的性質(zhì),線段中點即線段上一點,把這條線段分成相等的兩條線段的點,熟練掌握直角三角形的性質(zhì)是解題的關(guān)鍵.9、40【解析】【分析】根據(jù)等邊對等角得到,再根據(jù)三角形外角的性質(zhì)得到,故,由三角形的內(nèi)角和即可求解的度數(shù).【詳解】解:∵,∴,∴,∵,∴,∴,故答案為:40.【考點】本題考查等腰三角形的性質(zhì)、三角形外角的性質(zhì)、三角形的內(nèi)角和,熟練掌握幾何知識并靈活運用是解題的關(guān)鍵.10、或【解析】【分析】分∠A為頂角及∠A為底角兩種情況考慮,當∠A為頂角時,利用三角形內(nèi)角和定理可求出底角的度數(shù),結(jié)合“特征值”的定義即可求出特征值k的值;當∠A為底角時,利用三角形內(nèi)角和定理可求出頂角的度數(shù),結(jié)合“特征值”的定義即可求出特征值k的值.【詳解】當為頂角時,則底角度數(shù)為,則;當為底角時,則頂角度數(shù)為,;故答案為:或.【考點】本題考查了等腰三角形的性質(zhì)及三角形內(nèi)角和定理,分∠A為頂角及∠A為底角兩種情況求出“特征值”k是解題的關(guān)鍵.三、解答題1、10【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)可得,據(jù)此即可求解.【詳解】解:∵是的垂直平分線,∴,∵是的垂直平分線,∴,∴的周長.【考點】此題主要考查了線段垂直平分線的性質(zhì)等幾何知識,線段垂直平分線上的點到線段兩端點的距離相等.2、見解析.【解析】【分析】由AD是△ABC的角平分線,DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì),可得DE=DF,∠BED=∠CFD=90°,繼而證得Rt△BED≌Rt△CFD,則可得∠B=∠C,證得AB=AC,然后由三線合一,證得AD是BC的中垂線.【詳解】解:是的角平分線,,,,,在和中,,,,,是的角平分線,是的中垂線.【考點】此題考查了等腰三角形的性質(zhì)與判定以及全等三角形的判定與性質(zhì).注意掌握三線合一性質(zhì)的應(yīng)用.3、(1),;(2)①作圖見解析;②見解析【解析】【分析】(1)結(jié)合等腰三角形和等邊三角形的性質(zhì),可得∠ABD=∠ADB,從而求解出角度后,再計算∠BDF即可;(2)①根據(jù)尺規(guī)作圖作角平分線的方法畫出的平分線即可;②設(shè)∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論