2026屆浙江省金華市東陽市東陽中學數(shù)學九上期末經(jīng)典模擬試題含解析_第1頁
2026屆浙江省金華市東陽市東陽中學數(shù)學九上期末經(jīng)典模擬試題含解析_第2頁
2026屆浙江省金華市東陽市東陽中學數(shù)學九上期末經(jīng)典模擬試題含解析_第3頁
2026屆浙江省金華市東陽市東陽中學數(shù)學九上期末經(jīng)典模擬試題含解析_第4頁
2026屆浙江省金華市東陽市東陽中學數(shù)學九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2026屆浙江省金華市東陽市東陽中學數(shù)學九上期末經(jīng)典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.帥帥收集了南街米粉店今年6月1日至6月5日每天的用水量(單位:噸),整理并繪制成如下折線統(tǒng)計圖.下列結(jié)論正確的是()A.極差是6 B.眾數(shù)是7 C.中位數(shù)是5 D.方差是82.如圖所示,把一張矩形紙片對折,折痕為AB,再把以AB的中點O為頂點的平角三等分,沿平角的三等分線折疊,將折疊后的圖形剪出一個以O為頂點的等腰三角形,那么剪出的等腰三角形全部展開平鋪后得到的平面圖形一定是A.正三角形 B.正方形 C.正五邊形 D.正六邊形3.把分式中的、都擴大倍,則分式的值()A.擴大倍 B.擴大倍 C.不變 D.縮小倍4.下列圖形中,是中心對稱圖形的是()A. B. C. D.5.在一個晴朗的上午,小麗拿著一塊矩形木板在陽光下做投影實驗,矩形木板在地面上形成的投影不可能是()A. B.C. D.6.如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上且A(﹣3,0),B(2,b),則正方形ABCD的面積是()A.20 B.16 C.34 D.257.一塊圓形宣傳標志牌如圖所示,點,,在上,垂直平分于點,現(xiàn)測得,,則圓形標志牌的半徑為()A. B. C. D.8.如圖,邊長為的正六邊形內(nèi)接于,則扇形(圖中陰影部分)的面積為()A. B. C. D.9.如圖,在中,點D,E分別為AB,AC邊上的點,且,CD、BE相較于點O,連接AO并延長交DE于點G,交BC邊于點F,則下列結(jié)論中一定正確的是A. B. C. D.10.不論取何值時,拋物線與軸的交點有()A.0個 B.1個 C.2個 D.3個11.下列各式由左到右的變形中,屬于分解因式的是()A. B.C. D.12.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件二、填空題(每題4分,共24分)13.汽車剎車后行駛的距離(單位:)關(guān)于行駛的時間(單位:)的函數(shù)解析式是.汽車剎車后到停下來前進了______.14.為了解早高峰期間A,B兩鄰近地鐵站乘客的乘車等待時間(指乘客從進站到乘上車的時間),某部門在同一上班高峰時段對A、B兩地鐵站各隨機抽取了500名乘客,收集了其乘車等待時間(單位:分鐘)的數(shù)據(jù),統(tǒng)計如表:等待時的頻數(shù)間乘車等待時間地鐵站5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合計A5050152148100500B452151674330500據(jù)此估計,早高峰期間,在A地鐵站“乘車等待時間不超過15分鐘”的概率為_____;夏老師家正好位于A,B兩地鐵站之間,她希望每天上班的乘車等待時間不超過20分鐘,則她應盡量選擇從_____地鐵站上車.(填“A”或“B”)15.將拋物線先向右平移個單位,再向下平移個單位,所得到的拋物線的函數(shù)解析式是____.16.如圖,的中線、交于點,點在邊上,,那么的值是__________.17.如圖,點D在的邊上,已知點E、點F分別為和的重心,如果,那么兩個三角形重心之間的距離的長等于________.18.已知二次函數(shù)y=2(x-h)2的圖象上,當x>3時,y隨x的增大而增大,則h的取值范圍是______.三、解答題(共78分)19.(8分)如圖,平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=﹣在第二象限內(nèi)的圖象相交于點A,與x軸的負半軸交于點B,與y軸的負半軸交于點C.(1)求∠BCO的度數(shù);(2)若y軸上一點M的縱坐標是4,且AM=BM,求點A的坐標;(3)在(2)的條件下,若點P在y軸上,點Q是平面直角坐標系中的一點,當以點A、M、P、Q為頂點的四邊形是菱形時,請直接寫出點Q的坐標.20.(8分)某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.(1)求一次函數(shù)的表達式;(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.21.(8分)如圖,在△ABC中,∠C=90°,AB的垂直平分線分別交邊AB、BC于點D、E,連結(jié)AE.(1)如果∠B=25°,求∠CAE的度數(shù);(2)如果CE=2,,求的值.22.(10分)如圖,在正方形ABCD中,E為邊AD上的點,點F在邊CD上,且CF=3FD,∠BEF=90°(1)求證:△ABE∽△DEF;(2)若AB=4,延長EF交BC的延長線于點G,求BG的長23.(10分)如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且A?B?C位于點C的異側(cè),并表示出點A1的坐標.(2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.(3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).24.(10分)已知二次函數(shù)與軸交于、(在的左側(cè))與軸交于點,連接、.(1)如圖1,點是直線上方拋物線上一點,當面積最大時,點分別為軸上的動點,連接、、,求的周長最小值;(2)如圖2,點關(guān)于軸的對稱點為點,將拋物線沿射線的方向平移得到新的拋物線,使得交軸于點(在的左側(cè)).將繞點順時針旋轉(zhuǎn)至.拋物線的對稱軸上有—動點,坐標系內(nèi)是否存在一點,使得以、、、為頂點的四邊形是菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.25.(12分)如圖,AB為⊙O的直徑,C為⊙O上一點,D為的中點.過點D作直線AC的垂線,垂足為E,連接OD.(1)求證:∠A=∠DOB;(2)DE與⊙O有怎樣的位置關(guān)系?請說明理由.26.閱讀下面材料,完成(1)﹣(3)題數(shù)學課上,老師出示了這樣一道題:如圖,四邊形ABCD,AD∥BC,AB=AD,E為對角線AC上一點,∠BEC=∠BAD=2∠DEC,探究AB與BC的數(shù)量關(guān)系.某學習小組的同學經(jīng)過思考,交流了自己的想法:小柏:“通過觀察和度量,發(fā)現(xiàn)∠ACB=∠ABE”;小源:“通過觀察和度量,AE和BE存在一定的數(shù)量關(guān)系”;小亮:“通過構(gòu)造三角形全等,再經(jīng)過進一步推理,就可以得到線段AB與BC的數(shù)量關(guān)系”.……老師:“保留原題條件,如圖2,AC上存在點F,使DF=CF=AE,連接DF并延長交BC于點G,求的值”.(1)求證:∠ACB=∠ABE;(2)探究線段AB與BC的數(shù)量關(guān)系,并證明;(3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)極差、眾數(shù)、中位數(shù)及方差的定義,依次計算各選項即可作出判斷.【詳解】解:由圖可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A.極差,結(jié)論錯誤,故A不符合題意;B.眾數(shù)為5,7,11,3,1,結(jié)論錯誤,故B不符合題意;C.這5個數(shù)按從小到大的順序排列為:3,5,7,1,11,中位數(shù)為7,結(jié)論錯誤,故C不符合題意;D.平均數(shù)是,方差.結(jié)論正確,故D符合題意.故選D.本題考查了折線統(tǒng)計圖,重點考查了極差、眾數(shù)、中位數(shù)及方差的定義,根據(jù)圖表準確獲取信息是解題的關(guān)鍵.2、D【解析】對于此類問題,學生只要親自動手操作,答案就會很直觀地呈現(xiàn).【詳解】由第二個圖形可知:∠AOB被平分成了三個角,每個角為60°,它將成為展開得到圖形的中心角,那么所剪出的平面圖形是360°÷60°=6邊形.故選D.本題考查了剪紙問題以及培養(yǎng)學生的動手能力及空間想象能力,此類問題動手操作是解題的關(guān)鍵.3、C【分析】依據(jù)分式的基本性質(zhì)進行計算即可.【詳解】解:∵a、b都擴大3倍,∴∴分式的值不變.故選:C.本題主要考查的是分式的基本性質(zhì),熟練掌握分式的基本性質(zhì)是解題的關(guān)鍵.4、D【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.本題考查的知識點是中心對稱圖形,掌握中心對稱圖形的定義是解此題的關(guān)鍵.5、A【解析】解:將矩形木框立起與地面垂直放置時,形成B選項的影子;將矩形木框與地面平行放置時,形成C選項影子;將木框傾斜放置形成D選項影子;根據(jù)同一時刻物高與影長成比例,又因矩形對邊相等,因此投影不可能是A選項中的梯形,因為梯形兩底不相等.故選A.6、C【分析】作BM⊥x軸于M.只要證明△DAO≌△ABM,推出OA=BM,AM=OD,由A(﹣3,0),B(2,b),推出OA=3,OM=2,推出OD=AM=5,再利用勾股定理求出AD即可解決問題.【詳解】解:作軸于.四邊形是正方形,,,,,,,在和中,,,,,,,,,,正方形的面積,故選:.本題考查正方形的性質(zhì)、坐標與圖形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線構(gòu)造全等三角形解決問題,屬于中考??碱}型.7、B【分析】連結(jié),,設半徑為r,根據(jù)垂徑定理得,在中,由勾股定理建立方程,解之即可求得答案.【詳解】連結(jié),,如圖,設半徑為,∵,,∴,點、、三點共線,∵,∴,在中,∵,,即,解得,故選B.本題考查勾股定理,關(guān)鍵是利用垂徑定理解答.8、B【分析】根據(jù)已知條件可得出,圓的半徑為3,再根據(jù)扇形的面積公式()求解即可.【詳解】解:正六邊形內(nèi)接于,,,是等邊三角形,,扇形的面積,故選:.本題考查的知識點求扇形的面積,熟記面積公式并通過題目找出圓心角的度數(shù)與圓的半徑是解題的關(guān)鍵9、C【分析】由可得到∽,依據(jù)平行線分線段成比例定理和相似三角形的性質(zhì)進行判斷即可.【詳解】解:A.∵,∴,故不正確;B.∵,∴,故不正確;C.∵,∴∽,∽,,.,故正確;D.∵,∴,故不正確;故選C.本題主要考查的是相似三角形的判定和性質(zhì),熟練掌握相似三角形的性質(zhì)和判定定理是解題的關(guān)鍵.10、C【分析】首先根據(jù)題意與軸的交點即,然后利用根的判別式判定即可.【詳解】由題意,得與軸的交點,即∴不論取何值時,拋物線與軸的交點有兩個故選C.此題主要考查根據(jù)根的判別式判定拋物線與坐標軸的交點,熟練掌握,即可解題.11、C【解析】根據(jù)題中“屬于分解因式的是”可知,本題考查多項式的因式分解的判斷,根據(jù)因式分解的概念,運用因式分解是把多項式分解成若干個整式相乘的形式,進行分析判斷.【詳解】A.屬于整式乘法的變形.B.不符合因式分解概念中若干個整式相乘的形式.C.運用提取公因式法,把多項式分解成了5x與(2x-1)兩個整式相乘的形式.D.不符合因式分解概念中若干個整式相乘的形式.故應選C本題解題關(guān)鍵:理解因式分解的概念是把多項式分解成若干個整式相乘的形式,注意的是相乘的形式.12、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.二、填空題(每題4分,共24分)13、6【分析】根據(jù)二次函數(shù)的解析式可得出汽車剎車時時間,將其代入二次函數(shù)解析式中即可得出s的值.【詳解】解:根據(jù)二次函數(shù)解析式=-6(t2-2t+1-1)=-6(t-1)2+6可知,汽車的剎車時間為t=1s,當t=1時,=12×1-6×12=6(m)故選:6本題考查了二次函數(shù)性質(zhì)的應用,理解透題意是解題的關(guān)鍵.14、B【分析】用“用時不超過15分鐘”的人數(shù)除以總?cè)藬?shù)即可求得概率;先分別求出A線路不超過20分鐘的人數(shù)和B線路不超過20分鐘的人數(shù),再進行比較即可得出答案.【詳解】∵在A地鐵站“乘車等待時間不超過15分鐘有50+50=100人,∴在A地鐵站“乘車等待時間不超過15分鐘”的概率為=,∵A線路不超過20分鐘的有50+50+152=252人,B線路不超過20分鐘的有45+215+167=427人,∴選擇B線路,故答案為:,B.此題考查了用頻率估計概率的知識,能夠讀懂圖是解答本題的關(guān)鍵,難度不大;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、【分析】根據(jù)題意先確定出原拋物線的頂點坐標,然后根據(jù)向右平移橫坐標加,向下平移縱坐標減求出新圖象的頂點坐標,然后寫出即可.【詳解】解:拋物線的頂點坐標為(0,0),向右平移1個單位,再向下平移2個單位后的圖象的頂點坐標為(1,-2),所以得到圖象的解析式為.故答案為:.本題主要考查的是函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關(guān)鍵.16、【分析】根據(jù)三角形的重心和平行線分線段成比例解答即可.【詳解】∵△ABC的中線AD、CE交于點G,

∴G是△ABC的重心,

∴,

∵GF∥BC,

∴,

∵DC=BC,

∴,

故答案為:.此題考查三角形重心問題以及平行線分線段成比例,解題關(guān)鍵是根據(jù)三角形的重心得出比例關(guān)系.17、4【分析】連接并延長交于G,連接并延長交于H,根據(jù)三角形的重心的概念可得,,,,即可求出GH的長,根據(jù)對應邊成比例,夾角相等可得,根據(jù)相似三角形的性質(zhì)即可得答案.【詳解】如圖,連接并延長交于G,連接并延長交于H,∵點E、F分別是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案為:4本題考查了三角形重心的概念和性質(zhì)及相似三角形的判定與性質(zhì),三角形的重心是三角形中線的交點,三角形的重心到頂點的距離等于到對邊中點的距離的2倍.18、h≤3【解析】試題解析:二次函數(shù)的對稱軸為:當時,隨的增大而增大,對稱軸與直線重合或者位于直線的左側(cè).即:故答案為:點睛:本題考查二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.當時,隨的增大而增大,可知對稱軸與直線重合或者位于直線的左側(cè).根據(jù)對稱軸為,即可求出的取值范圍.三、解答題(共78分)19、(1)∠BCO=45°;(2)A(﹣4,1);(3)點Q坐標為(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).【分析】(1)證明△OBC是等腰直角三角形即可解決問題;(2)如圖1中,作MN⊥AB于N.根據(jù)一次函數(shù)求出交點N的坐標,用b表示點A坐標,再利用待定系數(shù)法即可解決問題;(3)分兩種情形:①當菱形以AM為邊時,②當AM為菱形的對角線時,分別求解即可.【詳解】(1)∵一次函數(shù)y=﹣x+b的圖象交x軸于B,交y軸于C,則B(b,0),C(0,b),∴OB=OC=﹣b,∵∠BOC=90°∴△OBC是等腰直角三角形,∴∠BCO=45°.(2)如圖1中,作MN⊥AB于N,∵M(0,4),MN⊥AC,直線AC的解析式為:y=﹣x+b,∴直線MN的解析式為:y=x+4,聯(lián)立,解得:,∴N(,),∵MA=MB,MN⊥AB,∴NA=BN,設A(m,n),則有,解得:,∴A(﹣4,b+4),∵點A在y=﹣上,∴﹣4(b+4)=﹣4,∴b=﹣3,∴A(﹣4,1);(3)如圖2中,由(2)可知A(﹣4,1),M(0,4),∴AM==5,當菱形以AM為邊時,AQ=AQ′=5,AQ∥OM,可得Q(﹣4,﹣4),Q′(﹣4,6),當A,Q關(guān)于y軸對稱時,也滿足條件,此時Q(4,1),當AM為菱形的對角線時,設P″(0,b),則有(4﹣b)2=42+(b﹣1)2,∴b=﹣.∴AQ″=MP″=,∴Q″(﹣4,),綜上所述,滿足條件的點Q坐標為(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).本題主要考查反比例函數(shù)與一次函數(shù)的綜合以及菱形的性質(zhì)定理,根據(jù)題意添加輔助線畫出圖形,數(shù)形結(jié)合,式是解題的關(guān)鍵.20、解:(3)一次函數(shù)的表達式為(4)當銷售單價定為4元時,商場可獲得最大利潤,最大利潤是893元(3)銷售單價的范圍是.【解析】(3)列出二元一次方程組解出k與b的值可求出一次函數(shù)的表達式.(4)依題意求出W與x的函數(shù)表達式可推出當x=4時商場可獲得最大利潤.(3)由w=500推出x4﹣380x+7700=0解出x的值即可.【詳解】(3)根據(jù)題意得:,解得k=﹣3,b=3.所求一次函數(shù)的表達式為;(4)=,∵拋物線的開口向下,∴當x<90時,W隨x的增大而增大,而銷售單價不低于成本單價,且獲利不得高于45%,即60≤x≤60×(3+45%),∴60≤x≤4,∴當x=4時,W==893,∴當銷售單價定為4元時,商場可獲得最大利潤,最大利潤是893元.(3)令w=500,解方程,解得,,又∵60≤x≤4,所以當w≥500時,70≤x≤4.考點:3.二次函數(shù)的應用;4.應用題.21、(1)∠CAE=40°;(2)【分析】(1)由題意DE垂直平分AB,∠EAB=∠B,從而求出∠CAE的度數(shù);(2)根據(jù)題干可知利用余弦以及勾股定理求出的值.【詳解】解:(1)∵DE垂直平分AB,∴EA=EB,∴∠EAB=∠B=22°.∴∠CAE=40°.(2)∵∠C=90°,∴.∵CE=2,∴AE=1.∴AC=.∵EA=EB=1,∴BC=2.∴,∴.本題主要應用三角函數(shù)定義來解直角三角形,關(guān)鍵要運用銳角三角函數(shù)的概念及比正弦和余弦的基本關(guān)系進行解題.22、(1)詳見解析;(2)1【分析】(1)由正方形的性質(zhì)得出∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,證出∠ABE=∠DEF,即可得出△ABE∽△DEF;(2)求出DF=1,CF=3,由相似三角形的性質(zhì)得出,解得DE=2,證明△EDF∽△GCF,得出,求出CG=6,即可得出答案.【詳解】(1)證明:∵四邊形ABCD為正方形,∴∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,∵∠BEF=90°,∵∠AEB+∠EBA=∠DEF+∠EBA=90°,∴∠ABE=∠DEF,∴△ABE∽△DEF;(2)解:∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE∽△DEF,∴,即,解得:DE=2,∵AD∥BC,∴△EDF∽△GCF,∴,即,∴CG=6,∴BG=BC+CG=4+6=1.本題考查了相似三角形的判定及性質(zhì)、正方形的性質(zhì),掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.23、(1)見解析,A1(3,﹣3);(2)見解析;(3)【分析】(1)延長BC到B1,使B1C=2BC,延長AC到A1,使A1C=2AC,再順次連接即可得△A1B1C,再寫出A1坐標即可;(2)分別作出A,B繞C點順時針旋轉(zhuǎn)90°后的對應點A2,B2,再順次連接即可得△A2B2C.(3)點B的運動路徑為以C為圓心,圓心角為90°的弧長,利用弧長公式即可求解.【詳解】解:(1)如圖,△A1B1C為所作,點A1的坐標為(3,﹣3);(2)如圖,△A2B2C為所作;(3)CB=,所以點B經(jīng)過的路徑長=π.本題考查網(wǎng)格作圖與弧長計算,熟練掌握位似與旋轉(zhuǎn)作圖,以及弧長公式是解題的關(guān)鍵.24、(1);(1)存在,理由見解析;,,,,【分析】(1)利用待定系數(shù)法求出A,B,C的坐標,如圖1中,作PQ∥y軸交BC于Q,設P,則Q,構(gòu)建二次函數(shù)確定點P的坐標,作P關(guān)于y軸的對稱點P1(-2,6),作P關(guān)于x軸的對稱點P1(2,-6),的周長最小,其周長等于線段的長,由此即可解決問題.(1)首先求出平移后的拋物線的解析式,確定點H,點C′的坐標,分三種情形,當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1.當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2.當OC′是菱形的對角線時,分別求解即可解決問題.【詳解】解:(1)如圖,,過點作軸平行線,交線段于點,設,=-(m1-2)1+2,∵,∴m=2時,△PBC的面積最大,此時P(2,6)作點關(guān)于軸的對稱點,點關(guān)于軸的對稱點,連接交軸、軸分別為,此時的周長最小,其周長等于線段的長;∵,∴.(1)如圖,∵E(0,-2),平移后的拋物線經(jīng)過E,B,∴拋物線的解析式為y=-x1+bx-2,把B(8,0)代入得到b=2,∴平移后的拋物線的解析式為y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,∴H(1,0),∵△CHB繞點H順時針旋轉(zhuǎn)90°至△C′HB′,∴C′(6,1),當OC′=C′S時,可得菱形OC′S1K1,菱形OC′S1K1,∵OC′=C′S==1,∴可得S1(5,1-),S1(5,1+),∵點C′向左平移一個單位,向下平移得到S1,∴點O向左平移一個單位,向下平移個單位得到K1,∴K1(-1,-),同法可得K1(-1,),當OC′=OS時,可得菱形OC′K3S3,菱形OC′K2S2,同法可得K3(11,1-),K2(11,1+),當OC′是菱形的對角線時,設S5(5,m),則有51+m1=11+(1-m)1,解得m=-5,∴S5(5,-5),∵點O向右平移5個單位,向下平移5個單位得到S5,∴C′向上平移5個單位,向左平移5個單位得到K5,∴K5(1,7),綜上所述,滿足條件的點K的坐標為(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7).本題屬于二次函數(shù)綜合題,考查了二次函數(shù)的性質(zhì),平移變換,翻折變換,菱形的判定和性質(zhì),軸對稱最短問題等知識,解題的關(guān)鍵是學會利用軸對稱解決最短問題,學會用分類討論的思想思考問題.25、(1)見解析;(2)相切,理由見解析【分析】(1)連接OC,由D為的中點,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論